Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work is aimed at developing relations between the pertinent variables that affect drilling process of stainless steel using artificial neural network. The experiments were conducted on vertical CNC machining centre. The parameters used were spindle speed and feed rate. The effect of machining parameters on entry burr height, exit burr height and surface roughnesswas experimentally evaluated for different spindle speeds and feed rates. A model was established between the drilling parameters and experimentally obtained data using ANN. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the burr height and surface roughness in drilling of stainless steel. Genetic algorithm (GA) technique was used in this work to identify the optimized drilling parameters. Confirmation test was conducted with the optimized parameters and it was found that confirmation test results were similar to that of GA-predicted output values.
Czasopismo
Rocznik
Tom
Strony
271--276
Opis fizyczny
Bibliogr. 14 poz., 1 il. kolor., 1 fot.
Twórcy
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India 603203
autor
- Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Tiruchirappalli, Tamilnadu, India 621112
autor
- Department of Mechanical Engineering, A.R.S College of Engineering, Sattamangalam, Kanchipuram, Tamilnadu, India 603209
autor
- Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India 620015
autor
- Department of Electronics Engineering, University of Rome Tor Vergata, Roma, Italy 173
Bibliografia
- [1] Senthilkumaar, J. S., Selvarani P. and Arunachalam R. M. Intelligent optimization and selection of machining parameters in finish turning and facing of Inconel,718,Int. J. Adv.Manuf.Technol, 58, 885-894, 2012.
- [2] Lee B.Y. and Tarng Y.S. Surface roughness inspection by computer vision in turning operation, Int. J. Mach. Tools Manuf.,39, 1251-1263, 2001.
- [3] Shanti Parkash, Mukesh Verma and Sarabjot Singh Modeling and optimization of burr height in drilling of Al-Fly ash composite using Taguchi method. Int. J. of Engg. Research and Appl., 2, 383- 390, 2012.
- [4] Karnik S. R., Gaitonde V. N. and Davim J. P. A comparative study of the ANN and RSM modelling approaches for predicting burr size in drilling, Int. J. Adv. Manuf. Technol., 38, 868-883,2008.
- [5] Bhatnagar A. and Manoj Khandelwal An intelligent approach to evaluate drilling performance, Neural. Comput. & Applic., 21, 763-770, 2012.
- [6] Singh A.K., Panda S.S., Pal S.K. and Chakraborty D. Predicting drill wear using an artificial neural network, Int. J. Adv. Manuf. Technol., 28, 456-462,2006.
- [7] Huang B. and Chen J. C. An In-Process Neural Network-Based Surface Roughness Prediction (INN-SRP) System Using a Dynamometer in End Milling Operations. Int. J. Adv.Manuf. Technol.21, 339- 347,2003.
- [8] Wang Z.G., Wong Y.S. and Rahman M. Optimisation of multipass milling using genetic algorithm and genetic simulated Annealing, Int. J. Adv. Manuf. Technol.,24, 727-732,2004.
- [9] Oktem H., Erzurumlu T. and Erzincanli F. Prediction of minimum surface roughness in end millingmold parts using neural network and genetic algorithm, Mater. Design, 27, 735-744,2006.
- [10] Suresh P.V.S., Rao P.V. and Deshmukh S.G. A genetic algorithmic approach for optimization of surface roughness prediction model, Int. J. Mach. Tool Manuf., 42, 675-680, 2002.
- [11] Conceição António C.A., & Paulo Davim J. and Vítor Lapa Artificial neural network based on genetic learning for machining of polyetheretherketone composite materials, Int. J. Adv. Manuf. Technol., 39, 1101-1110,2008.
- [12] Deepan Bharathi Kannan T., Ramesh T., and Sathiya P. Application of Artificial Neural Network Modelling for Optimization of Yb: YAG laser welding of NiTinol, Trans. Indian Inst. Met. DOI 10.1007/s12666-016-0973-x.,2016.
- [13] Deepan Bharathi Kannan T., Rajesh Kannan, Suresh Kumar B. and Baskar N. Application of Artificial Neural Network modelling for machining parameters optimization in Drilling Operation, Proc. Mater. Sci. 5, 2242-2249, 2014.
- [14] Deepan Bharathi Kannan T., Rajesh Kannan G., Umar M. and Ashok Kumar S. ANN Approach for modelling parameters in drilling operation, Int. J. of Sci.& Tech.,8, 1-5,2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84d31ff7-98ea-4578-9aa6-753eb5b40e1a