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Abstract: Owing to the ecological requirements and regula-
tions, an enormous concern is being paid to the product re-processing.
In the established literature, researchers considered that the re-
manufactured items are as good as the new ones. Yet, such an
assumption is not convenient, as in many real situations the recy-
cled products are considered by the customers to be of secondary
quality. Further, the classical studies mainly addressed the inven-
tory models without shortages, and this is not applicable in many
practical business situations. This paper extends the reverse logis-
tics inventory models with finite production and remanufacturing
rate along with the assumption that newly produced and repaired
(remanufactured) objects are not of same characteristics. Shortages
are allowed and numerous stock-out cases are discussed. The col-
lected used items are remanufactured (repaired) and non-repaired
products are disposed off. The proposed models are illustrated with
some numerical examples and their results are discussed.

Keywords: inventory models, production, remanufacturing,
shortages

1. Introduction

Inventory management in reverse logistics, which incorporates joint manufac-
turing and remanufacturing options, has been receiving increasing attention in
recent years. However, fast developments in technology and mass appearance
of new industrial products, which are coming to the market, have resulted in
an increasing number of idle products and caused growing environmental prob-
lems worldwide. Therefore, increasing ecological concerns, end user awareness,
economic considerations, and legislation, related to waste disposal, encourage
manufacturers to take back products after customer have used them. Recently,
growing interest and realisations in the reverse logistics processes, such as the
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recovery of the returned products, have become one of the ways, in which busi-
nesses endeavor to retain and increase competitiveness in the global market.

Schrady (1967) first explored a deterministic reverse logistic Economic Order
Quantity (EOQ) model for repairable items with multiple repair cycles and one
production cycle. The model of Schrady (1967) was extended by Nahmias and
Rivera (1979) with inclusion of the case of finite repair rate. Richter (1996a, b)
proposed an EOQ model with waste disposal and looked over the optimal figure
of production and remanufacturing batches, depending on the rate of return.
Richter (1997), Richter and Dobos (1999) investigated whether a policy of either
total waste disposal or no waste disposal is optimal. Teunter (2001) considered
multiple production and remanufacturing cycles and generalized the results from
Schrady (1967). Dobos and Richter (2003) developed a production/recycling
setup with constant demand that is satisfied by non-instantaneous production
and recycling with a single repair and a single production batch in an interval
of time. Later on, Dobos and Richter (2004) generalized their earlier model
(Dobos and Richter, 2003) by considering multiple refurbish/repair and pro-
duction batches in a time interval. Along the same line of study, Dobos and
Richter (2006) further extended the model and assumed that the quality of col-
lected used/returned items is not always suitable for further recycling. Later
on, Jaber and El Saadany (2009) extended the work of Richter (1996a, b) by
assuming that the remanufactured items are considered by the customers to be
of lower quality than the new ones. Alamri (2011) put forward a general reverse
logistics inventory model for deteriorating items by considering the acceptable
returned quantity as a decision variable. Singh and Saxena (2012) proposed a
reverse logistics inventory model allowing for back-orders. Hasanov et al. (2012)
extended the work of Jaber and El Saadany (2009) by assuming that unfulfilled
demand of remanufactured and produced items is either fully or partially back-
ordered. Singh et al. (2012) developed an economic production lot-size (EPLS)
model with rework and flexibility under allowable shortages. Singh and Sharma
(2013a) developed a global optimizing policy for decaying items with ramp-type
demand rate under two-level trade credit financing, taking into account a preser-
vation technology. El Saadany et al. (2013) discussed an inventory model with
the question as to how many times a product can be remanufactured. Singh
and Sharma (2013b) explored an integrated model with variable production and
demand rates under inflation. Later, Singh and Sharma (2014) proposed an op-
timal trade-credit policy for perishable items, assuming imperfect production
and stock dependent demand. Recently, Singh and Sharma (2016) established
a production reliability model for deteriorating products with random demand
and inflation, and Bazan et al. (2016) presented a comprehensive review of
mathematical inventory models for reverse logistics.

In the existing literature, most of the research articles are developed with
the assumption that the produced and recovered items are not of different qual-
ity. In many practical business situations this hypothesis is not adequate, as
the repaired (remanufactured) items are considered of secondary quality by the
customers. In addition, infinite or instantaneous production and remanufac-
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turing rates are assumed in many previous reverse logistic inventory models.
Therefore, in this study, reverse logistics models with finite production, reman-
ufacturing and several stock-out cases are developed. It is assumed that newly
produced and remanufactured items are different in quality. This paper is an
extension of the work of Hasanov et al. (2012) for the case of finite production
and remanufacturing. We have also considered disposal cost for the disposed
items. Numerical experiments and sensitivity analysis are provided to illustrate
the proposed models. The behaviors of the total average cost functions for
different stock-out cases are shown with respective graphs.

2. Assumptions and notations

In this section, assumptions and notations used in the proposed model are given.
These assumptions and notations are based on Dobos and Richter (2004) and
Jaber and El Saadany (2009).

2.1. Assumptions

1. Finite production and remanufacturing rates.
2. Remanufactured items are not as good as new.
3. Demands for produced and remanufactured items are known, constant but

different.
4. Lead time is zero and unlimited storage capacity is available.
5. Constant but different collection rates for previously used manufactured

and remanufactured items.
6. A single product case.
7. Infinite planning horizon.

2.2. Notations

Decision variables:

m Number of remanufacturing batches
n Number of production batches
γr Collection percentage of available returns of previously remanufac-

tured items (0 6 γr 6 1)
γp Collection percentage of available returns of newly produced items

(0 < γp 6 1)
θr Proportion of maximum inventory in a cycle of used/repaired items

consumed in the remanufacturing segment of T (0 6 θr 6 1)
θp Proportion of maximum inventory in a cycle of newly produced items

consumed in the production segment of T (0 6 θp 6 1)

Input parameters:

Dp Demand rate for newly produced items (units/ unit of time)
Dr Demand rate for remanufactured items (units/ unit of time), where

Dr is not necessarily equal to Dp
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Dp/η Production rate (0 <η <1)
Dr/δ Remanufacturing rate (0 <δ <1)
Sp Setup cost for a production cycle ($)
Sr Setup cost for a remanufacturing cycle ($)
hp Holding cost per unit per unit of time of a produced item ($/unit/unit

of time)
hr Holding cost per unit per unit of time of a remanufactured item

($/unit/unit of time)
hu Holding cost per unit per unit of time of a used item ($/unit/unit of

time)
cp Per unit production cost ($)
cr Per unit remanufacturing cost ($)
cw Per unit disposal cost ($)
βp Percentage of available returns from the primary market for produced

items
βr Percentage of available returns from the secondary market for reman-

ufactured items (0 6 βr 6 βp 6 1), where (1 − βr) and (1 − βp) are
the waste disposal rates

lr Lost sale cost for a remanufactured item ($/unit)
lp Lost sale cost for a produced item ($/unit)
br Backorder cost for a remanufactured item ($/unit/unit of time)
bp Backorder cost for a produced item ($/unit/unit of time)
v Proportion of Dp that is backordered (0 <v <1), and (1-v) is the

proportion of Dp that is lost
s Proportion of Dr that is backordered (0 <s <1), and (1-s) is the

proportion of Dr that is lost

Decision variable dependent parameters:

T Cycle length
TR One remanufacturing cycle length
TP One production cycle length
TP
R Length of the period, for which the inventory of produced items is

positive during the remanufacturing process
TR
P Length of the period, for which the inventory of remanufactured items

is positive during the production process
tr Length of an incomplete segment of a remanufacturing cycle during

the remanufacturing process
tp Length of an incomplete segment of a production cycle during the

production process
T1 The period, in which remanufacturing starts and shortages for reman-

ufactured (or repaired) items (which occurred during production pro-
cess) are backordered and demand for remanufactured items, which
occurs during this period, is also satisfied
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T2 The period in which production starts and shortages for newly pro-
duced items (which occurred during remanufacturing process) are
backordered and demand for new items which occurs during this pe-
riod is also fulfilled.

3. Mathematical formulation and solution

The production, remanufacturing and waste disposal model, described in Hasa-
nov et al. (2012), is depicted in Fig. 1. Similarly as in the paper by Richter
(1996b), there are two shops in the system. In the first shop (serviceable stock),
newly produced and remanufactured (repaired) items are accumulated, while in
the second shop (repairable stock), returned/used items are stored. Collected
used items are screened, and those considered to be non-repairable are disposed
off. In this model, it is assumed that the newly produced items are sold on the
primary market, while, on the other hand, the remanufactured items are sold on
the secondary market at a reduced price. There are multiple remanufacturing
and production cycles in an interval of length T .

Figure 1. Material flow for a production and remanufacturing system

3.1. Scenario 1

3.1.1.Case 1: Partial backordering

The Case 1 of Scenario 1, where unfulfilled demands of remanufactured and
produced items are partially backordered, is illustrated in Fig. 2. In this case,
some sales are considered to be lost, as all the customers will not wait for the
next batch, when the shortages can be backordered. Specifically, a percentage
(s) of demand for remanufactured items is backordered during the remanufac-
turing period T1 and a percentage of demand (1-s) is lost. Quite analogously, a
percentage (v) of the demand for newly produced items is backordered during
the period T2, while a percentage (1 − v) for new items is lost.
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Figure 2. The inventory status for the system with partial backordering

There are multiple remanufacturing and production batches in an interval
of length T , so we have

mTR + T1 + nTP + T2 = T. (1)

Now, the remanufacturing quantity is

Dr (mTR + T1)+s (nTP + T2)Dr = (mTR + T1) γrβrDr+(nTP + T2) γpβpDp

⇒ (1− γrβr)Dr (mTR + T1) = (nTP + T2) (γpβpDp − sDr) . (2)

Since the shortages are partially backordered, during T1 and T2, so:
For the time period T1, we have

Dr

δ
T1 = sDr (nTP + T2) +DrT1

⇒
(1− δ)T1

sδ
= (nTP + T2) . (3)

Similarly, for the period T2, we have

Dp

η
T2 = vDp (mTR + T1) +DpT2

⇒
(1− η)T1

vη
= (mTR + T1) . (4)

From equations (2), (3) and (4) we get

T1 =
sδ (1− η) (1− γrβr)DrT2

vη (1− δ) (γpβpDp − sDr)
. (5)
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Now, from equations (1), (3) and (4), we have

(1− η)T2
vη

+
(1− δ)T1

sδ
= T.

By putting the value of T1 from equation (5), we get

T2 =
vη (γpβpDp − sDr)T

(g − sDr) (1− η)
, where g = (Dr + γpβpDp − γrβrDr) . (6)

Hence, from equations (5) and (6), we have

T1 =
sδ (1− γrβr)DrT

(1− δ) (g − sDr)
. (7)

By simplifying equations (4), (6) and (7), we obtain

TR =
[α− (1− δ) sDr]T

m (1− δ) (g − sDr)
, where α = [(1− δ) γpβpDp − (1− γrβr) sδDr] . (8)

Again, from equations (3), (6) and (7), we get

TP =
T (ξ + vsηDr)

n (1− η) (g − sDr)
,where ξ = [(1− η) (1− γrβr)Dr − vηγpβpDp] . (9)

The inventory holding cost expressions for the newly produced, remanufac-
tured and returned items are given, respectively, as

HP =
nhp (1− η)DpT

2
P

2
=
hp (ξ + vsηDr)

2
DpT

2

2n (1− η) (g − sDr)
2 (10)

HR =
mhr (1− δ)DrT

2
R

2
=
hr [α− (1− δ) sDr]

2
DrT

2

2m (1− δ) (g − sDr)
2 (11)

Hr = hu

[

mDrT
2
R

2
{δ + γrβr − 2δγrβr + (m− 1) (1− γrβr)}+

γpβpDpT
2
2

2

+
(1− δγrβr)DrT

2
1

2δ
+ γrβrDr (1− δ)TRT2 + (m− 1) (1− γrβr)×

DrTRT1 + (1− δγrβr)DrTRT1 +
γpβpDpn

2T 2
P

2
+

{γpβpDpT2 + γrβrDr (1− δ)TR}nTP ]
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⇒ Hr =

huT
2

2 (g − sDr)
2

[

Dr {α− (1− δ) sDr}
2

m (1− δ)
2 {δ + γrβr (1− 2δ) +(m− 1) (1− γrβr)}

+
γpβpDpv

2η2 (γpβpDp − sDr)
2

(1− η)2
+
s2δD3

r (1− δγrβr) (1− γrβr)
2

(1− δ)2

+
2vηγrβrDr {α− (1− δ) sDr} (γpβpDp − sDr)

m (1− η)
+
γpβpDpv

2η2 (ξ + vsηDr)
2

(1− η)
2

+
2sδD2

r (1− γrβr) {α− (1− δ) sDr} {(m− 1) (1− γrβr) + (1− δγrβr)}

m (1− δ)
2

+

{

2γpβpDpvη (γpβpDp − sDr)

(1− η)
+

2γrβrDr {α− (1− δ) sDr}

m

}

(ξ + vsηDr)

(1− η)

]

.

(12)

See Appendices 1 and 2 for the derivations of the holding costs expressions.
The total holding cost per unit of time is

HT =
HP +HR +Hr

T

or HT = Tψ (m,n, γr, γp) , (13)

where

ψ (m,n, γr, γp) =
HP +HR +Hr

T 2
. (14)

The set up cost per unit time is

Sc =
(mSr + nSp)

T
. (15)

The disposal cost per unit of time is

Dc =
cw

T
[(Dp − γpβpDp) (nTP + T2) + (Dr − γrβrDr) (mTR + T1) ] .

By introducing the values of T2, T1, TR and Tp from equations (6)-(9), respec-
tively, and then solving, we get

Dc =
cw (1− γrβr)Dr (Dp − sDr)

(g − sDr)
. (16)

The remanufacturing cost per unit of time (including the purchasing cost of
used item) is

Rc =
cr

T

[

Dr

δ
T1 +

Dr

δ
(δTR)m

]

.
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By introducing the values of T1 and TR from equations (7)-(8), respectively, and
then solving, we get

Rc =
crDr [α+ (δ − γrβr) sDr]

(1− δ) (g − sDr)
(17)

The production cost per unit of time is

Pc =
cp

T

[

Dp

η
T2 +

Dp

η
(ηTP )n

]

.

By putting the values of T2 and TP from equations (6) and (9), respectively,
and then solving, we obtain

Pc =
cpDp [ξ + vsηDr + v (γpβpDp − sDr)]

(1− η) (g − sDr)
. (18)

The total backordering cost per unit of time for newly produced items is

BCp =
bp

T

[

vDp

2
(mTR + T1) (mTR + T1) +

vDp

2
(mTR + T1)T2

]

.

After solving, we get

BCp =
bpvDp (1− η + vη) (γpβpDp − sDr)

2
T

2 (1− η) (g − sDr)
2 . (19)

The total backordering cost per unit of time for remanufactured items is

BCr =
br

T

[

sDr

2
(nTP + T2) (nTP + T2) +

sDr

2
(nTP + T2) T1

]

.

After solving, we obtain

BCr =
br (1− δ + sδ) (1− γrβr)

2
sD3

rT

2 (1− δ) (g − sDr)
2 . (20)

The total backordering cost per unit of time is

BCPR = BCpr (γr, γp)T (21)

where

BCpr (γr, γp) =
[

bpvDp (1− η + vη) (γpβpDp − sDr)
2

2 (1− η) (g − sDr)
2 +

br (1− δ + sδ) (1− γrβr)
2
sD3

r

2 (1− δ) (g − sDr)
2

]

.

(22)
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The lost sales cost per unit of time for newly produced items is

LCp =
lp

T
[(1− v)Dp (mTR + T1)] =

lp (1− v)Dp (γpβpDp − sDr)

(g − sDr)
. (23)

The lost sales cost per unit of time for remanufactured (repaired) items is

LCr =
lr

T
[(1− s)Dr (nTP + T2)] =

lr (1− s)Dp (1− γrβr)D
2
r

(g − sDr)
. (24)

Therefore, the total cost per unit of time for the inventory system is

C (m,n, γr, γp, T ) =

[

(mSr + nSp)

T
+ ψT +BCprT +

cw (1− γrβr)Dr

(g − sDr)
×

(Dp − sDr) +
crDr [α+ (δ − γrβr) sDr]

(1− δ) (g − sDr)

+
cpDp

(1− η) (g − sDr)

(

ξ + vsηDr + v (γpβpDp − sDr)

)

+
lp (1− v)Dp (γpβpDp − sDr)

(g − sDr)
+
lr (1− s)Dp (1− γrβr)D

2
r

(g − sDr)

]

(25)

where ψ(m, n, γr, γp) and BCpr(γr, γp) are given by equations (14) and (22),
respectively.

Now, by putting the first order partial derivative of equation (25) equal to
zero and solving for T, we get

T =

√

(mSr + nSp)

ψ (m,n, γr, γp) +BCpr (γr, γp)
. (26)

Putting the value of T from equation (25) into (26), we obtain

C (m,n, γr, γp) =
1

(g − sDr)

[

2
√

(mSr + nSp) (ψ +BCpr) + cw (1− γrβr)×

Dr (Dp − sDr) +
crDr [α+ (δ − γrβr) sDr]

(1− δ)
+

cpDp

(1− η)
×

[ξ + vsηDr + v (γpβpDp − sDr)] + lp (1− v)Dp×

(γpβpDp − sDr) + lr (1− s)Dp (1− γrβr)D
2
r

]

(27)

3.1.2. Case 2: Full backordering

The Case 2 of Scenario 1, in which unfulfilled demands for remanufactured
and produced items are fully backordered, is illustrated in Fig. 3. During the
remanufacturing period T1, the shortages for remanufactured items are back-
ordered, while shortages for new items are backordered during the production
period T2.

See Appendix 3 for the expression of total cost per unit of time.
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Figure 3. The inventory status for the system with pure backordering

3.2. Scenario 2

During the Scenario of overlapping, there are multiple remanufacturing and
production cycls in the time period of lenght T . Consequently, we have

[(m− 1)TR + δTR + tr + T1] + [(n− 1)TP + ηTR + tp + T2] = T. (28)

Also, we have

tp =
θp

Dp

(

Dp

η
−Dp

)

ηTP

⇒ tp = θp (1− η) TP . (29)

and

tr =
θr

Dr

(

Dr

δ
−Dr

)

δTR

⇒ tr = θr (1− δ)TR. (30)

Since

tp + TP
R = (1− η)TP ,

so, by putting the value of tp from equation (29), and then solving, we get

TP
R = (1− θp) (1− η)TP . (31)

Similarly,

tr + TR
P = (1− δ)TR.
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By putting the value of tr from equation (30), and then solving, we obtain

TR
P = (1− θr) (1− δ)TR. (32)

Now, the remanufacturing quantity is

Dr (mTR + T1) = (mTR + T1) γrβrDr + (nTP + T2) γpβpDp

⇒ (1− γrβr)Dr (mTR + T1) = (nTP + T2) γpβpDp. (33)

3.2.1. Case 1: Overlapping and Partial backordering

The Case 1 of Scenario 2 is the one, where the fraction of the last remanu-
facturing run partially extends beyond the respective cycle interval, with the
starting production segment of the same cycle, and the last production run of
the current (previous) cycle going beyond relative to the starting remanufac-
turing segment of the next (current) cycle. In this case, unfulfilled demands of
remanufactured and newly produced items are partially backordered, as illus-
trated in Fig. 4. The unmet demand is lost at a cost. Note, that no more than
one (production or remanufacturing) portion is allowed as the remenufacturing
and production are performed in sequence on the same facility.

Here, the remanufacturing quantity is

(mTR + T1) γrβrDr + (nTP + T2) γpβpDp

= Dr (mTR + T1) +
[

(n− 1) TP + ηTP + tp + T2 − TR
P

]

sDr. (34)

Since, during the period T2, the shortages (for new items), which have occurred
during the remanufacturing process, are partially backordered, so, we have

[

(m− 1)TR + δTR + tr + T1 − TP
R

]

vDp =
DpT2

η
−DpT2

⇒ [(m− 1) + δ + θr (1− δ)] vTR−v (1− θp) (1− η)TP +vT1−
(1− η)T2

η
= 0.

(35)

Similarly, for the time period T1, we have

[

(n− 1)TP + ηTP + tp + T2 − TR
P

]

sDr =
DrT1

δ
−DrT1

⇒ [(n− 1) + η + θp (1− η)] sTP −s (1− θr) (1− δ)TR+sT2−
(1− δ)T1

δ
= 0.

(36)
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By solving equations (35) and (36), we get

T1 =
sδ

[(1− η) (1− δ)− vsηδ]
[{mvη + (1− δ) (θr − 1) (1− η + vη)}TR+

(1− η) {n+ (θp − 1) (1− η + vη)}TP ](37)

and

T2 =
vη

[(1− η) (1− δ)− vsηδ]
[(1− δ) {m+ (θr − 1) (1− δ + sδ)}TR+

{nsδ + (1− η) (θp − 1) (1− δ + sδ)}TP ](38)

From equations (34), (37) and (38), we find

TR =
L

M
TP . (39)

Figure 4. The inventory status for the system with overlapping and partial
backordering

In equation (39):

L = [vη (γpβpDp − sDr) {nsδ + (1− η) (θp − 1) (1− δ + sδ)}

−sδ (1− γrβr)Dr (1− η) {n+ (θp − 1) (1− η + vη)}

−sDr {(1− η) (1− δ)− vsηδ} {(n− 1) + η + θp (1− η)− nγpβpDp}](40)

and

lM = [Dr {m (1− γrβr) + s (θr − 1) (1− δ)} {(1− η) (1− δ)− vsηδ}

+sδ (1− γrβr)Dr {mvη + (1− δ) (θr − 1) (1− η + vη)}

−sDr {(1− η) (1− δ)− vsηδ} {(n− 1) + η + θp (1− η)− nγpβpDp}](41)

By solving equations (28), (35), (36), (37) and (38) we get

(1− δ)QTR
[(1− η) (1− δ)− vsηδ]

+
(1− η)RTP

[(1− η) (1− δ)− vsηδ]
= T (42)
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where

Q = [(1− η) {m+ (θr − 1) (1− δ + sδ)}+ {mvη + (1− δ) (θr − 1) (1− η + vη)}

− {(1− η) (1− δ)− vsηδ} (θr − 1)] (43)

and

R = [(1− δ) {n+ (θp − 1) (1− η + vη)}+ {nsδ + (1− η) (θp − 1) (1− δ + sδ)}

− {(1− η) (1− δ)− vsηδ} (θp − 1)] . (44)

By putting the value of TR from equation (39), we get

TP =
[(1− η) (1− δ)− vsηδ]MT

[(1− δ)QL+ (1− η)RM ]
. (45)

From equations (39) and (45), we deduce

TR =
[(1− η) (1− δ)− vsηδ]LT

[(1− δ)QL+ (1− η)RM ]
. (46)

From equations (37), (45) and (46), we get

T1 =
sδXT

[(1− δ)QL+ (1− η)RM ]
(47)

where

X = [L {mvη + (1− δ) (θr − 1) (1− η + vη)}

+M (1− η) {n+ (θp − 1) (1− η + vη)}] . (48)

Again, from equations (38), (45) and (46), we obtain

T2 =
vηY T

[(1− δ)QL+ (1− η)RM ]
(49)

where

Y = [M {nsδ + (1− η) (θp − 1) (1− δ + sδ)}

+L (1− δ) {m+ (θr − 1) (1− δ + sδ)}] . (50)

The inventory holding cost expressions for the newly produced, remanufactured
and returned items are given, respectively, as

HP =
nhp (1− η)DpT

2
P

2
=
nhp (1− η)Dp [(1− η) (1− δ)− vsηδ]

2
M2T 2

2 [(1− δ)QL+ (1− η)RM ]2
(51)

HR =
mhr (1− δ)DrT

2
R

2
=
mhr (1− δ)Dr [(1− η) (1− δ)− vsηδ]

2
L2T 2

2 [(1− δ)QL+ (1− η)RM ]
2 (52)
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Hr = hu

[

mDrT
2
R

2
{δ + (1− 2δ) γrβr + (m− 1) (1− γrβr)}+

γpβpDpT
2
2

2

+ (1− δγrβr)DrT1

(

T1

2δ
+ TR

)

+ γrβrDr (1− δ) TRT2 + (m− 1) (1− γrβr)

×DrTRT1 +
γpβpDpn

2T 2
P

2
+ {γpβpDpT2 + γrβrDr (1− δ)TR}nTP

]

⇒ Hr =
huT

2

2 [(1− δ)QL+ (1− η)RM ]
2

[

mL2Dr [(1− η) (1− δ)− vsηδ]
2
×

{δ + γrβr (1− 2δ) + (m− 1) (1− γrβr)}+ γpβpDpv
2η2Y 2 + (1− δγrβr)×

Drs
2δX2 + 2γrβrDrvηLY (1− δ) [(1− η) (1− δ)− vsηδ] + 2sLδXDr ×

{(m− 1) (1− γrβr) + (1− δγrβr)} [(1− η) (1− δ)− vsηδ]

+n2M2γpβpDp [(1− η) (1− δ)− vsηδ]
2
+ 2nM [γpβpDpvηY

+γrβrDrL (1− δ) [(1− η) (1− δ)− vsηδ]] [(1− η) (1− δ)− vsηδ]](53)

The total holding cost per unit of time is

HT =
HP +HR +Hr

T

HT = Tψ (m,n, γr, γp, θr, θp) (54)

where

ψ (m,n, γr, γp, θr, θp) =
HP +HR +Hr

T 2
. (55)

The set up cost per unit time is

Sc =
(mSr + nSp)

T
. (56)

The disposal cost per unit of time is

Dc =
cw

T
[(Dp − γpβpDp) (nTP + T2) + (Dr − γrβrDr) (mTR + T1) ] .

By inserting the values of TP , TR, T1 and T2 from equations (45), (46), (47)
and (49), respectively, and then solving, we get

Dc =
cw

[(1− δ)QL+ (1− η)RM ]
[Dp (1− γpβp) [nM {(1− η) (1− δ)− vsηδ}

+vηY ] +Dr (1− γrβr) [mL {(1− η) (1− δ)− vsηδ}+ sδX]] (57)

The remanufacturing cost per unit of time (including the purchasing cost of
used items)is

Rc =
cr

T

[

Dr

δ
T1 +

Dr

δ
(δTR)m

]

.
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By putting the values of TR and T1 from equations (46) and (47), respectively,
and then solving, we obtain

Rc =
crDr [sX +mL {(1− η) (1− δ)− vsηδ}]

[(1− δ)QL+ (1− η)RM ]
(58)

The production cost per unit of time is

Pc =
cp

T

[

Dp

η
T2 +

Dp

η
(ηTP )n

]

.

By introducing the values of TP and T2 from equations (45) and (49), respec-
tively, and then solving, we get

Pc =
cpDp [vY + nM {(1− η) (1− δ)− vsηδ}]

[(1− δ)QL+ (1− η)RM ]
. (59)

The total backordering cost per unit of time for newly produced items is

BCp =
bp

T

[

vDp

2

[

(m− 1)TR + δTR + tr + T1 − TP
R

]

[(m− 1)TR + δTR

+tr +T1 − TP
R

]

+
vDp

2

[

(m− 1)TR + δTR + tr + T1 − TP
R

]

T2

]

After solving, we obtain

BCp =
bpDp (1− η) (1− η + vη) vY 2T

2 [(1− δ)QL+ (1− η)RM ]2
(60)

The total backordering cost per unit of time for remanufactured items is

BCr =
br

T

[

sDr

2

[

(n− 1)TP + ηTP + tp + T2 − TR
P

]

[(n− 1)TP + ηTP

+tp + T2 − TR
P

]

+
sDr

2

[

(n− 1)TP + ηTP + tp + T2 − TR
P

]

T1

]

After solving, we get

BCr =
brDr (1− δ) (1− δ + sδ) sX2T

2 [(1− δ)QL+ (1− η)RM ]
2 . (61)

The total backordering cost per unit of time is

BCPR = BCpr (m,n, γr, γp, θr, θp) T (62)

where

BCpr (m,n, γr, γp, θr, θp)

=

[

bpDp (1− η) (1− η + vη) vY 2T

2 [(1− δ)QL+ (1− η)RM ]2
+
brDr (1− δ) (1− δ + sδ) sX2T

2 [(1− δ)QL+ (1− η)RM ]2

]

.

(63)
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The lost sales cost per unit time for newly produced items is

LCp =
lp

T

[

(1− v)Dp

{

(m− 1)TR + δTR + tr + T1 − TP
R

}]

⇒ LCp =
lpDpY (1− v) (1− η)

[(1− δ)QL+ (1− η)RM ]
. (64)

The lost sales cost per unit time for remanufactured items is

LCr =
lr

T

[

(1− s)Dr

{

(n− 1)TP + ηTP + tp + T2 − TR
P

}]

⇒ LCr =
lrDrX (1− s) (1− δ)

[(1− δ)QL+ (1− η)RM ]
. (65)

Therefore, the total cost per unit of time is

C (m,n, γr, γp, θr, θp, T )

=

[

(mSr + nSp)

T
+ ψT +BCprT +

1

[(1− δ)QL+ (1− η)RM ]
×

[cw [Dp (1− γpβp) {nM {(1− η) (1− δ)− vsηδ}+ vηY }

+Dr (1− γrβr) {mL {(1− η) (1− δ)− vsηδ}+ sδX}]

+crDr [sX +mL {(1− η) (1− δ)− vsηδ}] + cpDp×

[vY + nM {(1− η) (1− δ)− vsηδ}] + lpDpY (1− v) (1− η)

+ lrDrX (1− s) (1− δ)
]

(66)

Now, putting the first order partial derivative of equation (66) equal to zero
and solving for T, we get

T =

√

(mSr + nSp)

ψ (m,n, γr, γp, θr, θp) +BCpr (m,n, γr, γp, θr, θp)
. (67)
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Putting the value of T from equation (67) in (66), we get

C (m,n, γr, γp, θr, θp)

=
1

[(1− δ)QL+ (1− η)RM ]

[

2
√

(mSr + nSp) (ψ +BCpr)×

[(1− δ)QL+ (1− η)RM ] + lpDpY (1− v) (1− η)

+ cw [Dp (1− γpβp) {nM {(1− η) (1− δ)− vsηδ}+ vηY }

+Dr (1− γrβr) {mL {(1− η) (1− δ)− vsηδ}+ sδX}]

+crDr [sX +mL {(1− η) (1− δ)− vsηδ}] + cpDp×

[vY + nM {(1− η) (1− δ)− vsηδ}] + lrDrX (1− s) (1− δ)] (68)

3.2.2. Case 2: Overlapping and pure backordering

The case 2 of Scenario 2, described in Fig. 5 is similar to that of Fig. 4, except
that it assumes for pure backordering over a portion of the remanufacturing and
production segments.

Figure 5. The inventory status for the system with overlapping and pure back-
ordering

See Appendix 4 for the expression of total cost per unit of time.
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3.3. Solution procedure

Input the values of the parameters Dr, Dp, Sr, Sp, hp, hr, hu, cw, cp, cr, βp, βr,
bp, br, lp, lr, v, s, δ and η. Then proceed like in Jaber and El Saadany (2009),
that is, as follows:

Step 1. Set n=1, m=1, and optimize C(1,1,γr,γp). Record the values of
C(1,1,γr,γp), γ

∗

r(1,1) and γ
∗

p(1,1).

Step 2. Repeat Step 1 for m=2, n=1, and record C(2,1,γr,γp), γ
∗

r(2,1) and

γ∗p(2,1). Compare C(1,1,γr,γp) and C(2,1,γr,γp). If C(1,1,γr,γp) <C(2,1,γr,γp),

terminate the search for n=1 and record the value of C(1,1,γr,γp). If C(1,1,γr,
γp) >C(2,1,γr,γp), repeat step 1 for m=3, m=4, etc. Terminate once C(m∗

1-
1,1,γr,γp) >C(m

∗

1,1,γr,γp) <C(m
∗

1+1,1,γr,γp), where m∗

1 is the optimal value
for the number of remanufacturing cycles when there is one production cycle.
Record the value of C(m∗

1,1,γr,γp), m
∗

1, γ
∗

r(m∗

1
,1)

and γ∗
r(m∗

1
,1)

.

Step 3. Repeat Steps 1 and 2 for n=2. Compare C(m∗

1,1,γr,γp) and C(m∗

2,2,
γr,γp). If C(m

∗

1, 1, γr, γp) < C(m∗

2, 2, γr, γp), terminate the search and
C(m∗

1, 1, γr, γp) is the optimum solution. If C(m∗

1, 1, γr, γp) > C(m∗

2, 2, γr, γp),
then leave the value of C(m∗

1, 1, γr, γp) and repeat the steps 1 and 2 for n=3.

Step 4. Terminate the search, once C(m∗

i−1, i − 1, γr,γp) > C(m∗

i , i, γr, γp)
<C(m∗

i+1, i+1, γr, γp), where i is the optimal value for the number of production
cycles when there are m∗

i remanufacturing cycles at the cost of C(m∗

i , i, γr, γp).

A similar solution procedure can be used to find the optimal solution for
Scenario 2.

4. Numerical examples and sensitivity analysis

In this section, we have provided four numerical examples to illustrate the be-
haviour of the models developed in the previous section.

Example 1 (Scenario 1 - (case 1: Partial Backordering)) We consider the fol-
lowing parameter values on the basis of previous study: Dr = 10, Dp = 10,
Sp = 400, Sr = 200, hp = 4, hr = 2, hu = 2, βp = 0.667, βr = 0.667,
γmin = 0.01 (Jaber and El Saadany, 2009, p. 120), cw = 0.8, cp = 15, cr = 8,
δ = 0.45, η = 0.5, bp = 10, br = 5, lp = 3, lr = 1.5, v = 0.3 and s = 0.3. All
the computations are performed with the help of software MATHEMATICA
8.0. From Table 1 it can be seen that the optimal solution is m = 1, n = 1,
γp = 0.889, γr = 1 and C(m,n, γr, γp) = 349.726. The behavior of the total
cost function with respect to the parameters γr and γp is presented in Fig. 6.
Tables 2 and 3 show the results of sensitivity analysis conducted with respect
to the key parameters of the inventory system.

From Table 2, the following interesting findings can be deduced, which are
summarized below as:
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Figure 6. Behavior of the total cost function with respect to γr and γp for case
1 of Scenario 1

Table 4. Optimal policy for Example 1

Trial m n γp γr C
1∗ 1∗ 1∗ 0.889∗ 1∗ 349.726∗

2 2 1 0.955 1 367.393
3 1 2 0.761 1 392.969
4 2 2 0.831 1 404.263

(1) The sensitivity table shows that when demand parameter ‘Dr’ varies
from 1 to 12, the value of γr =1 and γp lies between 0.092 and 1 for the op-
timal solution; this implies that the most favorable strategy is to collect the
maximum available used products from secondary market and partially from
primary market. Even as γp =1 and γr decreases down to 0 when 12 6 Dr

<36, it is economically beneficial to collect the used items partially from the
secondary market and all the available returns from the primary market. After
that, when 36 6 Dr 6 50, the optimal solution exists for γr =0 and γp =1, and
in this case, it is beneficial to collect all the available returns from the primary
market and no returns from the secondary market.

(2) When 1 6 Dp <5, the best strategy takes place for γp =1 while γr in-
creases from 0 to 1, so it is economically advantageous to collect all the available
used products from the primary market and partially from the secondary mar-
ket. On the other hand, when 5 6 Dp 6 50, the optimal solution exists for
γr =1, and for reducing the value of γp down to 0.309, so it is encouraging to
accumulate all the available returns from the secondary market and partially
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Table 5. The effect of the changing values of the system parameters on the
optimal policies

Parameter value m n γp γr C

Dr

1 1 1 0.092 1 245.944
12 1 1 1 1 370.834
36 1 1 1 0 671.212
50 1 1 1 0 780.863

Dp

1 1 1 1 0 262.391
5 1 1 1 1 295.220
50 1 1 0.309 1 901.095

Sp

1 1 7 0.777 1 269.371
11.05 1 1 0.864 1 275.951
500 1 1 0.880 1 364.160

Sr

1 10 1 1 1 303.582
49.97 1 1 0.986 1 325.539
400 1 1 0.873 1 377.582

cw
0.1 1 1 0.876 1 347.101
2 1 1 0.913 1 354.140

βp

0.01 1 1 1 0 549.462
0.295 1 1 1 1 419.995
0.667 1 1 0.889 1 349.726

βr
0.01 1 1 1 1 369.663
0.667 1 1 0.889 1 349.726

from the primary market.

(3) When Sp varies from 1 to 11.05, then the optimal policy takes place for
m=1, while n varies from 7 to 1. While the value of γp varies from 0.777 to
0.864 and γr =1 for the optimal policy, the best strategy is to collect all the
available returns from the secondary market and partially from the primary
market. After that, when 11.05 <Sp 6 500, γp varies from 0.864 to 0.880 and
γr =1 for the optimal policy, and in this case the best strategy is to collect all
the available returns from the secondary market and partially from the primary
market.

(4) When Sr varies from 1 to 49.97, then solution exists for n=1, while m
varies from 10 to 1. While the value of γp varies from 1 to 0.986 and γr =1 for
the optimal solution, the best strategy is to collect maximum available returns
from the primary and secondary markets. After that, when 49.97 6 Sr 6 400,
then γp varies from 0.986 to 0.873 and γr =1 for the optimal policy, therefore the
best approach is to collect all the available returns from the secondary market
and partially from the primary market.

(5) When cw varies from 0.1 to 2, then γr =1 and the value of γp varies
from 0.876 to 0.913 for the most favorable policy, which suggests taking all the
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available used items from the secondary market and the maximum from the
primary market.

(6) When 0.01 6 βp <0.295, then the best possible solution exists for γp =1
and 0 6 γr 6 1, so it is economically beneficial to take all the available used
products from the primary market and partially from the secondary market.
After that, when 0.295 <βp 6 0.667 and 0.01 6 βr 6 0.667, then the optimal
strategy takes place for γr =1 and the value of γp varying from 1 to 0.889, so it
is preferable to accumulate all the available returns from the secondary market
and partially from the primary market.

Table 6. The effect of changing values of the backordering cost parameters on
the optimal strategy

bp br m n γp γr C

7
2 1 1 0.702 1 286.394
7 1 1 0.958 1 312.542

10
2 1 1 0.641 1 291.408
7 1 1 0.836 1 322.233

From Table 3 it can be observed that when bp = 7, 2 6 br 6 7, the optimal
policy exists for 0.702 6 γp 6 0.958 and γr = 1, and therefore it is efficient to
collect all the available returns from the secondary market and partially from
the primary market. Similarly, when bp = 10 and 2 6 br 6 7, the optimal
solution takes place for 0.641 ≤ γp ≤ 0.836 and γr = 1, so it is beneficial to
collect all the available returns from the secondary market and partially from
the primary market.

Example 2 (Scenario 1 - (case 2: Full Backordering)) Consider the case of
Example 1, except for the values Dr = 4, v = 1 and s = 1. From Table 4 it
can be seen that the optimal policy is m = 1, n = 1, γr = 1, γp = 0.669 and
C(m,n, γr, γp) = 417.073. The behavior of the total average cost function with
respect to γr and γp is shown in Fig. 7.

Table 7. Optimal policy for Example 2

Trial m n γp γr C
1∗ 1∗ 1∗ 0.669∗ 1∗ 417.073∗

2 2 1 0.672 1 455.888
3 1 2 0.657 1 475.287
4 2 2 0.660 1 507.382

Example 3 (Scenario 2 - (case 1: Overlapping and pure backordering))
On the basis of previous study the selected parameter values are as follows:

cw = 0.8, cp = 12, cr = 7, Dr = 10, Dp = 10, Sp = 400, Sr = 200, hp = 2,
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Figure 7. Behavior of the total cost function with respect to γr and γp for case
2 of Scenario 1

hr = 1, hu = 1, bp = 10, br = 5, lp = 7, lr = 2, v = 0.3, s = 0.3, βp = 0.667,
βr = 0.667, δ = 0.45, η = 0.5.

From Table 5 it can be seen that the optimal policy is m=1, n=1, γr =1,
γp =0.246, θp =1, θr =0.653 and C(m,n, γr, γp, θr, θp) = 305.479. The effect of
the changes in parameter values on the optimal policy is shown in Tables 6 and
7. The behavior of the total average cost function with respect to θr and θp is
shown in Fig. 8.

Figure 8. Behavior of the total cost function with respect to θp and θr for case
1 of Scenario 2

From Table 6 some important conclusions can be drawn, as follows: (1)
When cw = 0.1, then the optimal solution exists for γp = 0.464, γr = 0, θp = 1
and θr = 0.110; this suggests to collect no returns from the secondary market
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Table 8. Optimal strategy for Example 3.

Trial m n γp γr θp θr C
1∗ 1∗ 1∗ 0.246∗ 1∗ 1∗ 0.653∗ 305.479∗

2 2 1 0.253 1 0.835 0 322.946
3 1 2 0.420 0 0.703 0 333.743
4 2 2 0.213 1 0.003 0 343.545

and only partially from the primary market. In this case, the fraction of the
remanufacturing cycle almost completely overlaps, while there is no overlapping
of the fraction of the production cycle. When 0.1 <cw 6 0.47, then the optimal
solution takes place for the increasing value of γr (0 6 γr 6 1) and the de-
creasing value of γp down to 0.243, which shows that it is reasonable to collect
the available returns partially from the primary and secondary markets. After
that, the best solution exists for γr = 1 and 0.243 6 γp 6 0.256 when cw lies
between 0.47 and 2. When 0.1 < cw 6 2, then overlapping of the fraction of the
remanufacturing cycle shifts from partial to no overlapping, whereas there is no
overlapping of the fraction of the production cycle.

(2) When 1 6 Dr 6 50, then the optimal solution exists for 0.171 6 γp 6

0.202, γr = 1, θp = 1 and 0.336 6 θr 6 0, so it is preferable to accumulate a
lesser amount of used products from the primary market and the entirety of the
used products from the secondary market. In addition, no overlapping of the
fraction of the production cycle takes place, while the overlapping of the fraction
of the remanufacturing cycle shifts from partial to complete overlapping.

(3) When 1 6 Dp 6 50, then the best possible solution exists for γr = 1,
1 6 γp 6 0.054, 0.301 6 θp 6 1 and θr = 1, and therefore it is beneficial
to collect all the available returns from the primary and secondary markets,
which is the best policy when Dp = 1. After that, when 1 <Dp 6 50, then
it is reasonable to collect all the available returns from the secondary market
and a small amount from the primary market. On the other hand, there is no
overlapping of the fraction of remanufacturing cycle when 1 6 Dp 6 50, while
the overlapping of the fraction of the production cycle turns from partial to no
overlapping.

(4) When 1 6 Sp 6 28.1, then for the optimal solution m = 1 and n
reduces from 9 to 1; after that, when 28.1 6 Sp 6 500, the optimal solution
takes place for m = 1 and n = 1. It is practical to collect all the available
returns from the secondary market and partially from the primary market when
1 6 Sp 6 500, also, there is no overlapping of the fraction of the production
cycle for 1 6 Sp 6 500. While for Sp = 1 there is complete overlapping of
the fraction of the remanufacturing cycle, it turns into no overlapping when 1
<Sp 6 28.1, and again it changes to partial overlapping when 28.1 <Sp 6 500.

(5) When 1 6 Sr 6 20.4, then for the optimal solution n = 1 and m reduces
from 9 to 1, and after that, when 20.4 6 Sr 6 400, the optimal solution occurs
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Table 9. The effect of changes in the values of the system parameters on the
optimal policies

Para-
meter

value m n γp γr θp θr C

cw

0.10 1 1 0.464 0 1 0.110 299.664
0.47 1 1 0.243 1 1 0.568 303.178
2.00 1 1 0.256 1 1 1 313.641

Dr

1 1 1 0.171 1 1 0.336 222.017
50 1 1 0.202 1 1 0 600.564

Dp

1 1 1 1 1 0.301 1 190.736
50 1 1 0.054 1 1 1 856.136

Sp

1 1 9 0.205 1 1 0 236.266
28.1 1 1 0.252 1 1 1 249.915
500 1 1 0.244 1 1 0.529 316.972

Sr

1 9 1 0.258 1 0.453 0 274.849
20.4 1 1 0.250 1 1 1 281.929
400 1 1 0.242 1 1 0.441 327.631

βp

0.01 1 1 1 0 1 0 366.694
0.1 1 1 1 1 0.759 1 332.606
0.667 1 1 0.246 1 1 0.653 305.479

βr

0.01 1 1 0.463 0 1 0.256 306.037
0.09 1 1 0.429 1 1 0.301 306.039
0.667 1 1 0.246 1 1 0.653 305.479

for m=1 and n=1. It is practical to collect all the available returns from the
secondary market and partially from the primary market when 1 6 Sr 6 400,
also the overlapping of the fraction of the production cycle changes from partial
to no overlapping as Sr varies from 1 to 400. While for Sr = 1 there is complete
overlapping of the fraction of theremanufacturing cycle, it turns into no over-
lapping when 1 <Sr 6 20.4, and then again it changes to partial overlapping
when 20.4 <Sr 6 400.

(6) When 0.01 6 βp<0.1, then the best possible solution takes place for
γp = 1 and 0 6 γr<1, meaning that it is economically beneficial to receive
all used products from the primary market and partially from the secondary
market. After that, when 0.1 6 βp 6 0.667, then the optimal strategy takes
place for γr = 1 and the value of γp varying from 1 to 0.246, so it is preferable
to accumulate all the available returns from the secondary market and partially
from the primary market. The fraction of the production cycle overlaps partially
when 0.01 <βp<0.667, and the fraction of the remanufacturing cycle overlaps
partially when 0.01 <βp 6 0.667, except at βp = 0.1. There is no overlapping
of the fraction of the production cycle at βp = 0.01 and 0.667, while there is
complete overlapping of the fraction of remanufacturing cycle at βp = 0.01.
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(7) When 0.01 6 βr 6 0.667, then the best possible solution exists for
0.463 6 γp 6 0.246, 0 6 γr 6 1, θp = 1 and 0.256 6 θr 6 0.653. Consequently,
it is preferable to assemble used products partially from the primary market and
to ensure no overlapping of the fraction of the production cycle. The fraction
of the remanufacturing cycle overlaps partially when 0.01 6 βr 6 0.667, and
it is recommendable, therefore, to accumulate the available returns partially
from the secondary market when 0.01 <βr <0.09 (with no returns for βr =
0.01). After that, when 0.09 6 βr 6 0.667, then all the used products should
be collected from the secondary market.

Table 10. The effect of changes in the values of the backordering cost parameters
on the optimal policy

bp br m n γp γr θp θr C

7

2 1 1 0.233 1 1 1 279.283
6.12 1 1 0.592 0 1 0.430 304.609
7 1 1 0.622 0 1 0.330 307.514

10

2 1 1 0.191 1 1 0 282.882
6.3 1 1 0.508 0 1 0.0839 311.320
7 1 1 0.528 0 1 0.034 313.604

It can be observed on the basis of Table 7 that when bp = 7, 2 6 br 6 7, the
optimal policy exists for 0.233 6 γp 6 0.622 and 0 6 γr 6 1, and therefore it
is profitable to collect the available returns partially from the primary market
and to ensure no overlapping of the fraction of the production cycle. Then, at
br = 2 all used items should be collected and when 2 <br <6.12, the available
returns should be accumulated partially, and after that, when 6.12 6 br 6 7, no
returns should be collected from the secondary market. Partial overlapping (no
overlapping) of the remanufacturing cycle is preferable when 2 < br 6 7(br = 2).
Further, when bp = 10 and 2 6 br 6 7, the the observation can be made in the
similar manner as given for bp = 7, 2 ≤ br ≤ 7, except that the fraction of the
remanufacturing cycle almost completely overlaps when 2 ≤ br ≤ 7.

Example 4 (Scenario 2 - (case 2: Overlapping and full backordering))

On the basis of the previous investigations the parameter values are specified
as follows: cw = 0.8, cp = 12, cr = 7, Dr = 500, Dp = 600, Sp = 400, Sr = 200,
hp = 2, hr = 1, hu =1, bp =10, br =5, βp =0.667, βr =0.667, δ = 0.45, η = 0.5,
v=1, s=1.

From Table 8 it can be seen that the optimal strategy is m=1, n=1, γr = 1,
γp = 1, θp = 1, θr = 0.140, and C = 13167.40. The behavior of the total average
cost function with respect to θr and θp is shown in Fig. 9.
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Table 11. The optimal strategy for Example 4

Trial m n γp γr θp θr C
1∗ 1∗ 1∗ 1∗ 1∗ 1∗ 0.140∗ 13167.4∗

2 2 1 1 1 1 0 13627.8
3 1 2 0.01 0 1 1 13471.0
4 2 2 0.01 0 1 1 13692.7

Figure 9. Behavior of the total cost function with respect to θp and θr for case
2 of Scenario 2

5. Conclusions

In this article, reverse logistics inventory models with finite production and
remanufacturing rates are developed. To minimize the effects of stock-outs, the
overlapping of the fraction of one production cycle and one remanufacturing
cycle is taken into consideration. The cases of partial and full backordering,
which are discussed in this paper, have been illustrated with some numerical
experiments. This paper is more realistic and advantageous from the previous
one, as it is developed with the following more practical attributes: (1) demand
dependent production and remanufacturing rates are taken into account (2)
disposal cost is considered, (3) newly produced and remanufactured items are
considered of different quality standard, (4) returned rate is considered as a
function of demand rate and (5) purchasing cost of used items is also included.
In addition, from the sensitivity analysis whose results are shown in Tables
2 and 3 (for partial backordering case of Scenario 1), it is clear that when
1 ≤ Dr ≤ 12, 5 ≤ Dp ≤ 50, 1 ≤ Sp < 500, 1 ≤ Sr < 400, 0.1 ≤ cw < 2,
0.295 ≤ βp ≤ 0.667, 0.01 ≤ βr ≤ 0.667, bp = 7, 10 and 2 ≤ br ≤ 7, then
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the optimal policy is to collect all the available returns from the secondary
market, otherwise partial or no collection of the used items from the secondary
market is advisable. On the other hand, when 12 ≤ Dr ≤ 50, 1 ≤ Dp ≤ 5,
1 ≤ Sr < 49.97, 0.01 ≤ βp ≤ 0.295 and βr = 0.01, then the most favorable
policy is to collect all the available returns from the primary market, otherwise it
is economically beneficial to collect available returns partially from the primary
market. Again, from the sensitivity analysis, with results shown in Tables 6 and
7 (for overlapping and partial backordering case of Scenario 2), it is clear that
when 0.47 ≤ cw < 2, 1 ≤ Dr ≤ 50, 1 ≤ Dp ≤ 50, 1 ≤ Sp < 500, 1 ≤ Sr < 400,
0.1 ≤ βp ≤ 0.667, 0.09 ≤ βr ≤ 0.667, bp = 7, 10 and 2 ≤ br < 6.12, then
the optimal policy is to collect all the available returns from the secondary
market, otherwise partial or no collection of the used items from the secondary
market is worthwhile. On the other hand, when Dp = 1 and 0.01 ≤ βp ≤ 0.1,
then the most favorable policy is to collect all the available returns from the
primary market, otherwise it is sensible to collect available returns partially
from the primary market. The future research can include the consideration of
the model in the fuzzy environment
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Appendix 1

The holding cost for the newly produced items is calculated as follows:

HP = hpn (the area of the triangle I + the area of the triangle II) .

HP = hpn

[

1

2

((

Dp

η
−Dp

)

ηTP

)

ηTP +
1

2

((

Dp

η
−Dp

)

ηTP

)

(1− η)TP

]

⇒ HP =
hpn (1− η)DpT

2
P

2
(i)

The holding cost for remanufactured items is calculated as follows:

HR = hrm (the area of the triangle 1 + the area of the triangle 2) .

HR = hrm

[

1

2

((

Dr

δ
−Dr

)

δTR

)

δTR +
1

2

((

Dr

δ
−DR

)

δTR

)

(1− δ) TR

]

⇒ HR =
hrm (1− δ)DrT

2
R

2
(ii)
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Appendix 2

According to Fig. 10 we calculate the holding cost for returned items as follows:
Area of part A is

∆A =

(

1

2

(

Dr

δ
− γrβrDr

)

δTR

)

δTR =
1

2
(1− δγrβr) δDrT

2
R.

Area of part B is

∆B =

(

1

2
γrβrDr (1− δ)TR

)

(1− δ)TR =
1

2
γrβrDr (1− δ)

2
T 2
R.

Area of part C is

∆C =

(

1

2
γpβpDpT2

)

T2 =
1

2
γpβpDpT

2
2 .

Area of part D is

∆D = (γrβrDr (1− δ)TR)T2 = γrβrDr (1− δ)TRT2.

Area of part Ei is

∆Ei
=

((

Dr

δ
− γrβrDr

)

δTR − γrβrDr (1− δ)TR

)

iTR = (1− γrβr) iDrT
2
R.

Area of part F is

∆F =

(

1

2
γpβpDpnTP

)

nTP =
1

2
γpβpDpn

2T 2
P .

Area of part G is

∆G = (γpβpDpT2 + γrβrDr (1− δ)TR)nTP .

Area of part H is

∆H =

(

1

2

(

Dr

δ
− γrβrDr

)

T1

)

T1 =
1

2δ
(1− δγrβr)DrT

2
1 .

Area of part J is

∆J =

((

Dr

δ
− γrβrDr

)

δTR

)

T1 = (1− δγrβr)DrTRT1.

Area of part K is

∆K =

((

Dr

δ
− γrβrDr

)

δTR − γrβrDr (1− δ)TR

)

(m− 1)T1
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= (1− γrβr) (m− 1)DrTRT1.

Therefore, the holding cost for the returned items is

Hr = hu

[

m∆A +m∆B +∆C +∆D +

m−1
∑

i=1

∆Ei
+∆F +∆G +∆H +∆J +∆K

]

Hr = hu

[

mDrT
2
R

2
{δ + γrβr − 2δγrβr + (m− 1) (1− γrβr)}+

γpβpDpT
2
2

2

+
(1− δγrβr)DrT

2
1

2δ
+ γrβrDr (1− δ) TRT2 + (m− 1) (1− γrβr)×

DrTRT1 + (1− δγrβr)DrTRT1 +
γpβpDpn

2T 2
P

2
+

{γpβpDpT2 + γrβrDr (1− δ)TR}nTP ] (iii)

Figure 10. Inventory estimation for Hr

Appendix 3

To find the total cost per unit of time of the system for case 2 (full backordering)
of Scenario 1 we put v=1 and s=1 in equation (27), and then we get

C (m,n, γr, γp)

=
1

(g −Dr)

[

2
√

(mSr + nSp) (ψ +BCpr) + cw (1− γrβr)Dr (Dp −Dr)

+
crDr [α+ (δ − γrβr)Dr]

(1− δ)
+
cpDp [ξ + ηDr + (γpβpDp −Dr)]

(1− η)

]

(iv)
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Appendix 4

To find the total cost per unit of time of the system for case 2 (full backordering
with overlapping) of Scenario 2 we put v=1 and s=1 in equation (68), and then
we get

C (m,n, γr, γp, θr, θp)

=
1

[(1− δ)QL+ (1− η)RM ]

[

2
√

(mSr + nSp) (ψ +BCpr)×

[(1− δ)QL+ (1− η)RM ] + cw [Dp (1− γpβp) {nM×

{(1− η) (1− δ)− ηδ}+ ηY }+Dr (1− γrβr) {mL×

{{(1− η) (1− δ)− ηδ}+ δX}] + crDr [X +mL {(1− η)×

(1− δ)− ηδ}] + cpDp [vY + nM {(1− η) (1− δ)− vsηδ}]
]

. (v)
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