PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indoor air quality assessment in a single-family house equipped with demand controlled mechanical ventilation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of modelling airflow for ventilation of a single-family house with an area of 180 m2. The building was equipped with mechanical ventilation with the possibility of varying the airflow. The airflow was calculated as a function of carbon dioxide concentration. The presence of people in selected rooms was an internal source of carbon dioxide. In order to properly design of a ventilation system and then model the contamination level, ContamW software was used. The year-long cost analysis was carried out for the installation working with variable airflow (day, night). The analysis took into account the price of the electricity used by the fans of Air Handling Unit and meteorological data to estimate the power input to the heater of the Unit. Different scenarios of system operation were included as an input data in order to find a difference in energy consumption. The calculations were to answer the question of whether it is necessary to apply expensive and advanced system that enables individual control of the airflow in every room or use the simple control of the central unit to vary the airflow in the ventilation system of single-family houses. The difference in operating cost between the system that maintains 800 and 600 ppm reaches 100 % and demonstrates the need of simple demand controlled ventilation system.
Rocznik
Strony
387--402
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., tab.
Twórcy
  • Laboratory of Heating, Ventilation, Air Conditioning and Refrigeration, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland, phone +48 12 628 2086
  • Laboratory of Heating, Ventilation, Air Conditioning and Refrigeration, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland, phone +48 12 628 2086
Bibliografia
  • [1] Polska Norma (Polish Standard) PN-83/B-03430/Az3: Wentylacja w budynkach mieszkalnych zamieszkania zbiorowego i użyteczności publicznej (Ventilation in public and residential buildings). Available from: https://sklep.pkn.pl/pn-b-03430-1983-az3-2000p.html.
  • [2] ANSI/ASHRAE Standard 62.1-2019 Ventilation for Acceptable Indoor Air Quality 1791 Tullie Circle NE, Atlanta, GA. Available from: www.ashrae.org.
  • [3] Mijakowski M, Sowa J. An attempt to improve indoor environment by installing humidity-sensitive air inlets in a naturally ventilated kindergarten building, Building Environ. 2017;111:180-91. DOI: 10.1016/j.buildenv.2016.11.013.
  • [4] Wallner P, Munoz U, Tappler P, Wanka A, Kundi M, Shelton JF, et al. Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. conventional buildings. Int J Environ Res Public Health. 2015;12(11):14132-47. DOI: 10.3390/ijerph121114132.
  • [5] Nielsen TR, Drivsholm C. Energy efficient demand controlled ventilation in single family houses. Energy Buildings. 2010;42:1995-8. DOI: 10.1016/j.enbuild.2010.06.006.
  • [6] Evola G, Gagliano A, Marletta L, Nocera F. Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues. J Building Eng. 2017;11:96-107. DOI: 10.1016/j.jobe.2017.04.010.
  • [7] Laverge J, Van Den Bossche N, Heijmans N, Janssens A. Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build Environ. 2011;46:1497-503. DOI: 10.1016/j.buildenv.2011.01.023.
  • [8] Shin MS, Rhee KY, Lee ET, Jung GJ. Performance evaluation of CO2-based ventilation control to reduce CO2 concentration and condensation risk in residential buildings. Building Environ. 2018;142:451-63. DOI: 10.1016/j.buildenv.2018.06.042.
  • [9] Woradechjumroen D, Tongshoob T. Investigations of stack ventilation operations using an energy modelling and the bas system. IOP Conf. Series: Materials Sci Eng. 2020. DOI: 10.1088/1757-899X/886/1/012040.
  • [10] Widiastuti R, Hasan MI, Bramiana CN, Pramesti PU. CFD simulation on the natural ventilation and building thermal performance. IOP Conf Series: Earth Environ Sci. 2020. DOI: 10.1088/1755-1315/448/1/0120041.
  • [11] Jiang C, Soh YC, Masooda MK, Li H. Indoor occupancy estimation from carbon dioxide concentration. Energy Buildings. 2016;131:132-41. DOI: 10.1016/j.enbuild.2016.09.002.
  • [12] Ioannou A, Itard L. In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands. Energy Buildings. 2017;139:487-505. DOI: 10.1016/j.enbuild.2017.01.050.
  • [13] Zender-Świercz E. Analysis of the impact of the parameters of outside air on the condition of indoor air. Int J Environ Sci Technol. 2017;14:1-8. DOI: 10.1007/s13762-017-1275-5.
  • [14] Cichowicz R, Wielgosiński G. Effect of meteorological conditions and building location on CO2 concentration in the university campus. Ecol Chem Eng S. 2015;22(4):513-25. DOI: 10.1515/eces-2015-0030.
  • [15] Cichowicz R, Wielgosiński G, Targaszewska A. Analysis of CO2 concentration distribution inside and outside small boiler plants. Ecol Chem Eng S. 2016;23(1):49-60. DOI: 10.1515/eces-2016-0003.
  • [16] Cichowicz R, Wielgosiński G. Effect of urban traffic on the immision of carbon dioxide in the university campus. Ecol Chem Eng S. 2015;22(2):189-200. DOI: 10.1515/eces-2015-0010.
  • [17] Gładyszewska-Fiedoruk K, Ruiz de Adana M. Improving the effectiveness of stack ventilation by supplying an outdoor air stream. OP Conf Series: Materials Sci Eng. 2020; DOI: 10.1088/1757-899X/809/1/012008.
  • [18] Lei1 J, Chen H, Song R. Study on design strategies about single-sided natural ventilation in residential buildings. IOP Conf. Series: Earth Environ Sci. 2020; DOI: 10.1088/1755-1315/527/1/0120141.
  • [19] WMO Greenhouse Gas Bulletin (GHG Bulletin) - No. 13: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016; 2017. Available from: https://library.wmo.int/doc_num.php?explnum_id=4022.
  • [20] Müller J, Skrzyniowska D. Indoor Air Quality Problems in Passive Buildings. Proc 23rd IIR Int Congress Refrigeration: Prague, Czech Republic. August 21-26, 2011. Available from: https://iifiir.org/en/fridoc/28202.
  • [21] EN 15251. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Available from: https://sklep.pkn.pl/pn-en-15251-2012p.html.
  • [22] Emmerich SJ. Validation of multizone IAQ modeling of residential-scale buildings: a review. ASHRAE Trans Cincinnati. 2001 ASHRAE; 619-28. Available from: https://www.researchgate.net/publication/279555937_Validation_of_multizone_IAQ_modeling_of_residential-scale_buildings_A_review.
  • [23] Verijkazemi K, Mansouri N, Moattar F, Khezri M. Evaluation of indoor PM distribution by CONTAM airflow model and real time measuring: Model description and validation. Avicenna J Environ Health Eng. 2018;5:42-9. DOI: 10.15171/ajehe.2018.06.
  • [24] Barbosa BPP, Brum NDCL. Validation and assessment of the CFD-0 module of CONTAM software for airborne contaminant transport simulation in laboratory and hospital applications. Building Environ. 2018;142:139-52. DOI: 10.1016/j.buildenv.2018.06.013.
  • [25] Heibati S, Maref W, Saber H. Building energy and IAQ improvement by coupled model. IOP Conf Ser Mater Sci Eng. 2019; DOI: 10.1088/1757-899X/609/4/042102.
  • [26] Emmerich SJ. Validation of CONTAMW predictions for tracer gas in a townhouse. IBPSA, editor. 8th Int IBPSA Conf Eindhoven: IBPSA. 2003:299-306. Available from: http://www.ibpsa.org/proceedings/BS2003/BS03_0299_306.pdf.
  • [27] Delsante A, Aggerholm S. The use of simulation tools to evaluate hybrid ventilation control strategies. Annex 35. Technical Report. IEA/ECBCS; 2002. Available from: https://www.ieaebc.org/Data/publications/EBC_Annex_35_tsr.pdf.
  • [28] Bossche Van den N, Janssens A, Heijmans N, Wouters P. Performance evaluation of humidity controlled ventilation strategies in residential buildings. In: Thermal Performance of the Exterior Envelopes of Whole Buildings X. 2007; ASHRAE, Clearwater Beach, FL, USA, p. 7. Available from: https://web.ornl.gov/sci/buildings/conf-archive/2007%20B10%20papers/195_Bossche.pdf.
  • [29] Seong NC. Energy requirements of a multi-sensor based demand control ventilation system in residential buildings. 31st AIVC Conf Low Energy and Sustainable Ventilation Technologies for Green Buildings. 2010. Available from: https://www.aivc.org/sites/default/files/7B-2.pdf.
  • [30] ASHRAE Fundamentals, American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. Tullie Circle, N.E., Atlanta, GA: 2009. Available from: http://www.ashrae.org.
  • [31] Fanger PO. Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy Buildings. 1988;12(1):1-6. DOI: 10.1016/0378-7788(88)90051-5.
  • [32] Fanger PO, Lauridsen J, Bluyssen P, Clausen G. Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy Buildings. 1988;12(1):7-19. DOI: 10.1016/0378-7788(88)90052-7.
  • [33] Zender-Świercz E. Improving the indoor air quality using the individual air supply system. Int J Environ Sci Technol. 2018;15:689-96. DOI: 10.1007/s13762-017-1432-x.
  • [34] Ben-David T, Waring MS. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building Environ. 2017;104:320-36. DOI: 10.1016/j.buildenv.2016.05.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84d14c7e-71aa-4c8f-9c2a-c9010c32149e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.