Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the enhancement of lime mortar using Acacia Seyal Gum, a natural biopolymer, to improve its strength and durability under various environmental conditions. Mortar samples were prepared by adding Acacia Seyal Gum at 1%, 3%, and 5% by weight to its volume. The mechanical properties of the modified mortar were assessed under varying climatic conditions, specifically at temperatures of 25°C and 35°C and relative humidity levels of 20%, 50%, and 72%. The 3% gum-modified mortar showed the most significant improvement, exhibiting superior strength and durability compared to the reference mortar across all tested environments. Adding Acacia Seyal Gum improved the bond between lime and sand particles, decreased porosity, and increased moisture retention, which helped prevent early shrinkage and cracking. This study highlights the potential of Acacia Seyal Gum as a sustainable and effective additive for lime mortar, contributing to modern eco-friendly construction and the restoration of historic structures. The findings suggest that the gum-modified mortar could provide a reliable, durable, and environmentally responsible alternative to traditional lime mortars in regions with challenging environmental conditions.
Wydawca
Rocznik
Tom
Strony
47--62
Opis fizyczny
Bibliogr. 55 poz., fig., tab.
Twórcy
autor
- School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
autor
- CO2 Research & Green Technologies Center, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
Bibliografia
- 1. Marvila, Markssuel T., Azevedo, Afonso R.G., Barroso, Laimara S., Barbosa, Marcio Z., Brito, Jorgede. Gypsum plaster using rock waste: A proposal to repair the renderings of historical buildings in Brazil. Construct. Build. Mater. 2020; 250, 118786. https://doi.org/10.1016/j.conbuildmat.2020.118786.
- 2. Arizzi, A., Banfill, P.F.G. Rheology of lime pastes with biopolymer-based additives. Mater. Struct. 2019; 52, 8. https://doi.org/10.1617/s11527-019-1310-8.
- 3. Hall, C., Hoff, W.D. Water transport in brick, stone and concrete. Taylor and Francis, 2002. London. https://doi.org/10.4324/9780203301708.
- 4. Diana-Magaloni, R., Pancella, Y., Fruh, J., Canetas, V., Castano. Studies on the Mayan mortars technique. In: MRS Proceedings, 352, 483. Cambridge Univ Press, 1995.
- 5. Topcu, I.B., Bilir, T., Uygunoglu. Effect of waste marble dust content as filler on properties of self-compacting concrete. Construct. Build. Mater. 2009; 23, 1947–53. https://doi.org/10.1016/j.conbuildmat.2008.09.007.
- 6. Corinaldesi, G., Joriconi, T.R., Naik. Characterization of marble powder for use in mortar and concrete. Construct. Build. Mater. 2010; 24, 113–117.
- 7. Ventola, L., Vendrell, M., Giraldez, P., Merino, L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Construct. Build. Mater. 2011; 25, 3313–3318. https://doi:10.1016/j.conbuildmat.2011.03.020.
- 8. Cardenas, A., Arguelles, W.M., Goycoolea, F.M. On the possible role of Opuntiaficus-indica mucilage in lime mortar performance in the protection of historical buildings. Journal of the Professional Association for Cactus Development 1998; 3, 1–7. https://www.researchgate.net/publication/237810266.
- 9. Gour, K.A., Ramadoss, Ravi, Selvaraj, Thirumalini. Revamping the traditional air lime mortar using the natural polymer – areca nut for restoration application. Construct. Build. Mater. 2018; 164, 255–264. https://doi.org/10.1016/j.conbuildmat.2017.12.056.
- 10. Wang, S., Wang, S., Lu, Z., Yao, W., Liu, B., Li, B. Characterization of sticky-rice lime binders from old masonry relics in north China: the primary contribution for conservation. Construct. Build. Mater. 2020; 118887. https://doi.org/10.1016/j.conbuildmat.2020.118887.
- 11. Garcia Escalante, J.I., Sharp, J.H. The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cement Concr. Res. 2001; 31(5), 695–702. https://doi.org/10.1016/S0008-8846(03)00208-4.
- 12. Azree M, Mydin O. Preliminary studies on the development of lime-based mortar with added egg white. International Journal of Technology 2017; 5: 800–810.
- 13. Ragavaisree, Rajasekaran. Effect of natural admixture on mechanical properties of fly ash mix concrete. International Research Journal of Engineering and Technology 2019; 12, 1376–1383.
- 14. Babu R.T.S., Neeraja, D., Mulugeta D, UtinoW. Effect of natural admixture on durability properties of conventional and class C fly ash blended concrete. American Journal of Engineering Research 2017; 6(10), 321–333.
- 15. IS: 6932 (Part I), 1973. Methods of Tests for Building Limes Determination of Insoluble Residue, Loss on Ignition, Insoluble Matter, Silicon Dioxide, Ferric and Aluminum Oxide, Calcium Oxide and Magnesium Oxide. Bureau of Indian Standards, New Delhi, India.
- 16. IS: 2386 (Part I), 1963. Method of Test for Aggregate and Concrete-Particle Size and Shape. Bureau of Indian Standards, New Delhi, India.
- 17. IS: 6932 (Part II), 1983. Method of Tests for Building Lime-Determination of Setting Time of Lime. Bureau of Indian Standards, New Delhi, India.
- 18. DIN 18555-(Part 7) – 2000 Testing of mortars containing mineral binders; part 7: 18 Determination of water retentivity of freshly mixed mortar by the filter plate method. Deutsches Institut für Normung.
- 19. IS: 6932 (Part VII), 1973. Methods of Tests for Building Limes- Determination of Compressive and Transverse Strengths. Bureau of Indian Standards, New Delhi, India.
- 20. Mudgil D., Mudgil S. Acacia Gum: Chemistry, properties & food applications. Food and Humanity 2024; 100264. https://doi.org/10.1016/j.foohum.2024.100264.
- 21. IS: 7874 (Part I), 1975. Methods of Tests for Animal Feeds and Feeding Stuffs (Part I) General Methods. Bureau of Indian Standards, New Delhi, India. Reaffirmed 1990.
- 22. IS: 6932 - Part VIII (1973). Methods of tests for building Limes- Determination of workability. Bureau of Indian Standards, New Delhi, India.
- 23. IS 1199. Methods of sampling and analysis of concrete. Bureau of Indian Standards, New Delhi, India (2004).
- 24. ASTM E1621, 2013. Standard guide for elemental analysis by wavelength dispersive X-Ray fluorescence spectrometry. American Society for Testing and Materials, USA.
- 25. Lawrence R.M., Timothy J., Mays, Sean P. Rigby., Peter Walker., Dina D’Ayala. Effects of carbonation on pore structure of non-hydraulic lime mortars. Cem. Concr. Res. 2007; 37: 1059–1069. DOI: 10.1016/j.cemconres.2007.04.011.
- 26. Moorehead D.R. Cementation by the carbonation of hydrated lime. Cem. Concr. Res. 1986; 16: 700–708. https://doi.org/10.1016/0008-8846(86)90044-x.
- 27. Dheilly R.M., Tudo J., Sebaïbi Y., Quéneudec M. Influence of storage conditions on the carbonation of powdered Ca(OH)2. Construct. Build. Mater. 2002; 16(3): 155–161. doi:10.1016/S0950-0618(02)00012-0.
- 28. BS EN 13295. Products and systems for the protection and repair of concrete structures. Test methods. Determination of resistance to carbonation, 2004.
- 29. BS EN 12370. Natural stone test methods – Determination of resistance to salt crystallization. 1999. British Standards.
- 30. Morpoulou A., Bakolas A., Bisbikou K. Characterization of ancient Byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta 1995; 269(270): 779–795. http://dx.doi.org/10.1016/0040-6031(95)02571-5.
- 31. RILEM Test II.2 – coefficient of water vapour conductivity (δ). RILEM 25-PEM recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Mater. Struct. 1980; 13(75).
- 32. IS: 3085(1965) (Reaffirmed 2002). Method of test for permeability of cement mortar and concrete. Bureau of Indian Standards, New Delhi, India.
- 33. Earth manual, U.S. Bureau of Reclamation, 1960.
- 34. Qian J.Y., Chen, W., Zhang W.M., Zhang H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR, and optical rotation: a primary approach. Carbohydr. Polym. 2009; 78: 620–625. http://dx.doi.org/10.1016/j.carbpol.2009.05.025.
- 35. Thomson, M.L., Lindqvist S., Chandra, L. Eklund, R.R., Villarreal. Use of cactus in mortar and concrete. Cem. Concr. Res. 1998; 1(1): 41–51. https://doi.org/10.1016/S0008-8846(97)00254-8.
- 36. Elsen J.-E., Groot J. 2004. Porosity of Historic Mortars, 13th International Brick and Block Masonry Conference Amsterdam. July 4–7.
- 37. Rizwan, H.K., Siddiqi, M.K., Parveen S. Protein structure and function, basic biochemistry. Austin Publishing Group A.M.U, Aligarh, India, 2017. https://www.researchgate.net/publication/316139245.
- 38. Pavia, S., Fitzgerald, B., Howard, R. Evaluation of properties of magnesium lime mortar. In: Structural Studies, Repair and Maintenance of Heritage Architecture IX. Malta, June 83 WIT Transactions on the Built Environment, 375–384. https://www.researchgate.net/publication/237225843.
- 39. Shanmugavel D., Rachna D., Ravi R. Use of natural polymer from plant as admixture in hydraulic lime mortar masonry. Journal of Building Engineering 2020; 30, 101252. https://doi.org/10.1016/j.jobe.2020.101252.
- 40. Shanmugavel D., Kumar Yadav P., Khadimallah M.A., Ramadoss R. Experimental analysis on the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars. Journal of Cleaner Production 2021; 320: 128736. https://doi.org/10.1016/j.jclepro.2021.128736.
- 41. Bentz D.P., Geiker M.R., Hansen K.K. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars. Cement Concr. Res. 2001; 31: 1075–1085. https://doi.org/10.1016/S0008-8846(01)00519-1.
- 42. Yang F., Zhang B., Ma Q. Study of sticky rice lime mortar technology for the restoration of historical masonry construction. Acc. Chem. Res. 2010; 43(6): 936–944. https://doi.org/10.1021/ar9001944.
- 43. Zeng Y., Zhang B., Liang X. A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim. Acta. 2008; 473(1), 1–6. https://doi.org/10.1016/j.tca.2008.03.019.
- 44. Fernandes V., Silva L., Ferreira V.M., Labrincha J.A. Evaluation of mixing and application process parameters of single-coat mortars. Cem. Concr. Res. 2005; 35: 836–841. https://doi.org/10.1016/j.cemconres.2004.10.026.
- 45. Roca P., Cervera M., Gariup G., Pela L. Structural analysis of masonry historical constructions, Classical and advanced approaches. Arch. Comput. Method Eng. 2010; 17: 299–325. https://doi.org/10.1007/s11831-010-9046-1.
- 46. Lanas, J., Perez Bernal, J.L., Bello, M.A., Alvarez Galindo, J.I. Mechanical properties of natural hydraulic lime-based mortars. Cement Concr. Res. 2004; 34(12): 2191–2201. https://doi.org/10.1016/j.cemconres.2004.02.005.
- 47. Otero J., Charola A.E., Starinieri V. Sticky rice–nano lime as a consolidation treatment for lime mortars. J. Mater. Sci. 2019; 54: 10217–10234. https://link.springer.com/article/10.1007/s10853-019-03618-1.
- 48. Yang F., Zhang B., Ma Q. Study of sticky rice lime mortar technology for the restoration of historical masonry construction. Acc. Chem. Res. 2010; 43(6): 936–944.
- 49. Silva B.A., Ferreira Pinto A.P., Gomes A., Candeias A. Short- and long-term properties of lime mortars with water-reducers and a viscosity-modifier. Journal of Building Engineering 2021; 43: 103086.
- 50. Troedec, Le, Peyratout, M.C., Chotard, T., Bonnet, J.P., Smith, A. Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix: impacts on mechanical properties of mortars. In: Heinrich, J.G., Aneziris, G. (Eds.), 10th International Conference of the European Ceramic Society, 451–454.
- 51. Hasan Bo, ke, Izer, Ozlem C., Ipekoglu, Basak, Elif Ugurlu, Kerem Serifaki, Gulcan Toprak. Characteristics of lime produced from limestone containing diatoms. Construct. Build. Mater. 2008; 22, 866–874. https://doi.org/10.1016/j.conbuildmat.2006.12.010.
- 52. Manoharan A, Umarani C. Properties of air lime mortar with bio-additives. Sustainability 2022; 14: 8355. https://doi.org/10.3390/su14148355.
- 53. Shivakumar, T.S., Dhassaih M.P. Preparation and characterization of the ancient recipe of organic lime putty—evaluation for its suitability in the restoration of Padmanabhapuram Palace, India. Nature, Scientific Reports 2021; 11: 13261. https://doi.org/10.1038/s41598-021-91680-8.
- 54. Markssuel T.M., Afonso R.G., Azevedo B.L.S., Barbosa M.Z., Brito J. Gypsum plaster using rock waste: A proposal to repair the renderings of historical buildings in Brazil. Construction and Building Materials 2020; 250: 118786.
- 55. Hamed A., El-Sayed S., Assolie A.A., Alsafasfeh A. Mechanical performance and microstructure evolution of Nano-TiO2 enhanced cement – A comprehensive experimental analysis. Advances in Science and Technology Research Journal 2024; 18(7), 203–214. https://doi.org/10.12913/22998624/193524.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84cf3d9a-7125-4c18-92d4-ad0882d731d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.