PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Z-ion Zeolite Substrate on Growth of Zea mays L. as Energy Crop Growing on Marginal Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented study aimed at determining the influence of the increasing dose of new Z-ion zeolite substrate on the growth of maize (Zea mays L.) as species belonging to energy crops. In order to achieve the study aim, the pot experiment was carried out where the plants were grown on six series of media i.e.: on marginal soil (the control series I), on arable soil (the control series II) and on four mixtures of marginal soil with increasing Z-ion substrate addition (1%, 2%, 5%, 10 % v/v). The pot test was carried out in a phytotron with a 13/11 light/dark regime. After the end of the experiment, the mean values of the vegetative parameters (wet and dry biomass of roots and stems) characterizing the plant growth in particular media series were determined. The C:N ratio for maize stems was calculated as well. The obtained study results showed a favorable influence of Z-ion substrate additions on the vegetative growth of maize. Already a 1% (v/v) substrate addition to marginal soil increased the wet and dry stems biomass by 173–204%. At the same time, it turned out that in the sixth week of plant growth, a 5% substrate addition to the marginal soil enables to achieve the value of vegetation parameters at a level similar to that of the parameters characterizing the plant development on arable land. Thus, at an early stage of plant growth, a 5% substrate dose can be considered as one allowing a similar course of maize growing on marginal soil as in the case of arable soil. It is worth noting that at this substrate dose, the C:N ratio in maize stems reached the value of 13.05, at which the plant biomass is the substrate ensuring the fairly proper course of methane fermentation supplying fuel in the form of biogas.
Słowa kluczowe
Rocznik
Strony
253--260
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Environmental Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Environmental Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Barbosa D.B.P., Nabel M., Jablonowski N.D. 2014. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita L., Zea mays L. and Medicago sativa L. Energy Procedia, 59, 120–126.
  • 2. Chomczyńska M. 2013. Restoration of degraded soils using ion exchange materials (in Polish). Monografie Komitetu Inżynierii Środowiska PAN, 110, 1–145.
  • 3. Chomczynska M., Pristavko S., Soldatov V., Wasąg H. 2014. The influence of ion-exchange substrates on grass growth in sandy soils. Journal of Plant Nutrition and Soil Science, 177, 438–442.
  • 4. Chomczynska M., Soldatov V., Wasag H., Turski M. 2016. The effect of ion exchange substrate on grass root development and cohesion of sandy soil. International Agrophysics, 30, 293–300.
  • 5. Comparetti A., Febo P., Greco C., Orlando S. 2013. Current state and future of biogas and digestate production. Bulgarian Journal of Agricultural Science, 19, 1–14.
  • 6. Devore J.L. 2011. Probability and statistics for engineering and the sciences. Brooks/Cole Cengage Learning, Boston.
  • 7. Fageria N.K., Moreira A. 2011. The role of mineral nutrition on root growth of crop plants. In: D.L. Sparks (ed.), Advances in agronomy, Academic Press, San Diego, vol. 110: 251–331.
  • 8. FAO. 2009. The State of Food Insecurity in the World Economic Crises – impacts and Lessons Learned.
  • 9. Fritsche U.R., Sims R.E.H., Monti A. 2010. Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels, Bioproducts and Biorefining, 4, 692–704.
  • 10. Igliński B., Buczkowski R., Cichosz M. 2009. Bioenergetic technologies (in Polish). Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
  • 11. Jędrczak A. 2007. Biological waste treatment (in Polish). Wydawnictwo Naukowe PWN, Warszawa.
  • 12. Kainthola J., Kalamdhada A.S., GoudaV.V. 2019. Optimization of methane production during anaerobic co-digestion of rice straw and Hydrilla verticillata using response surface methodology. Fuel, 235, 92–99.
  • 13. Kosandrovich E.G., Soldatov V.S., Krasinskaya T.V., Kosandrovich S.Yu., Ionova O.V., Yezubets Н.P., Vonsovich N.V., Melnikov I.O., Saprykin V.V. 2019. Universal nitrate free nutrient substrates based on chemically modified natural clinoptilolites. III International symposium on growing media, composting and substrate analysis, Abstracts, 88.
  • 14. Koszel M., Lorencowicz E. 2015. Agricultural use of biogas digestate as a replacement fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124.
  • 15. Kościk B. 2003. Energetic plants (in Polish). Wydawnictwo Akdemii Rolniczej w Lublinie, Lublin.
  • 16. Lewandowski W.M., Ryms M. 2013. Biopaliwa. Proekologiczne odnawialne źródła energii. Wyd awnictwo WNT, Warszawa.
  • 17. Li Y., Park S.Y., Zhu J. 2011. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15, 821–826.
  • 18. Lityński T., Jurkowska H. 1982. Soil fertility and plant nutrition (in Polish). PWN, Warszawa.
  • 19. Montusiewicz A., Lebiocka M., Pawłowska M. 2008. Characterization of the biomethanization process in selected waste mixtures. Archives of Environmental Protection, 34, 49–61.
  • 20. Nabel M., Barbosa D.B.P., Korsch D., Jablonowski N.D. 2014. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment. Energy Procedia, 59, 127–133.
  • 21. Nabel M., Temperton V.M., Porter H., Lucke A., Jablonowski N.D. 2016. Energizing marginal soils – The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass and Bioenergy, 87, 9–16.
  • 22. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Methods for analysis and evaluation of soil and plant properties (in Polish). Instytut Ochrony Środwiska, Warszawa.
  • 23. Soldatov V.S. 2019. Artificial soils on the base of synthetic ion exchangers. III International symposium on growing media, composting and substrate analysis, Abstracts, 28.
  • 24. Wasąg H., Pawłowski L., Soldatov V.S., Szymańska M., Chomczyńska M., Kołodyńska M., Ostrowski J., Rut B., Skwarek A., Młodawska G. 2000. Restoration of degraded soils using ion exchange resins. Raport (in Polish). Politechnika Lubelska, Lublin.
  • 25. Wołek J. 2007. Introduction to statistics for biologists (in Polish). Wydawnictwo Naukowe Uniwersytetu Pedagogicznego w Krakowie, Kraków.
  • 26. Wooldridge J.M. 2009. Introductory econometrics: a modern approach. South-Western Cengage Learning, Mason.
  • 27. Yu P., White P.J., Hochholdinger F., Li C. 2014. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 240, 667–678.
  • 28. Zuur A.F. 2009. Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84ce25a5-837d-44fb-a4df-6deff16cfc09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.