Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we develop a novel graph theoretic approach for protein threading. In order to perform the protein sequence-structure alignment in threading both efficiently and accurately, we develop a graph model to describe the tertiary structure of a protein family and the alignment between a sequence and a family can be efficiently computed with a dynamic programming algorithm when the tree width of the graph model is a small integer. Our experiments show that this new approach is significantly faster than existing tools for threading and can achieve comparable prediction accuracy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--170
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- School of Electronics and Information Science, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, China
autor
- Department of Information Technology and Computer Science, Clayton State University Morrow, GA 30260, USA
autor
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA 30602, USA
autor
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA 30602, USA
Bibliografia
- [1] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research. 1997; 25(17):3389–3402. doi: 10.1093/nar/25.17.3389.
- [2] Amir E. Efficient Approximation for Triangulation of Minimum Treewidth. In: Proceedings of 17th Conference on Uncertainty in Artificial Intelligence, 2001. p. 7–15. ISBN:1-55860-800-1.
- [3] Arnborg S, Proskurowski A. Linear Time Algorithms for NP-hard Problems Restricted to Partial k-trees. Discrete Applied Mathematics, 1989;23:11–24. doi: 10.1016/0166-218X(89)90031-0.
- [4] Arnborg S, Corneil DG, Proskurowski A. Complexity of Finding Embeddings in A k-tree. SIAM Journal on Algebraic and Discrete Methods, 1987;8:277–284. doi: 10.1137/0608024.
- [5] Bodlaender HL, Koster AMCA. Safe Separators for Tree Width. Discrete Mathematics, 2003;306(3):337–350. doi: 10.1016/j.disc.2005.12.017.
- [6] Chen L,Wu L,Wang Y, Zhang S, ZhangX. Revealing Divergent Evolution, Identifying Circular Permutations and Detecting Active-Sites by Protein Structure Comparison. BMC Structural Biology, 2006;6(1):18. doi:10.1186/1472-6807-6-18.
- [7] Chen P, Han K, Li X, Huang DS. Predicting Key Long-Range Interaction Sites by B-factors. Protein and Peptide Letters, 2008;15(5):478–483. doi: 10.2174/092986608784567573.
- [8] Dong Q, Zhou S, Guan J. A New Taxonomy-Based Protein Fold Recognition Approach Based on Autocross-Covariance Transformation. Bioinformatics, 2009; 25(20): 2655–2662. doi: 10.1093/bioinformatics/btp500.
- [9] Eppstein D. Subgraph Isomorphism in Planar Graphs and Related Problems. Journal of Graph Algorithms and Applications, 1999;3(3):1–27. doi: 10.7155/jgaa.00014.
- [10] Godzik A, Kolinski A, Skolnick J. Topology Fingerprint Approach to The Inverse Folding Problem. Journal of Molecular Biology, 1992;227:227–238. doi:10.1016/0022-2836(92)90693-E.
- [11] Holm L, Sander C. Decision Support System for Evolutionary Classification of Protein Structures. Proceedings of International Conference on Intelligent Systems for Molecular Biology, 1997. p. 140–146. ISSN:1553-0833.
- [12] Huang DS, Huang X. Improved Performance in Protein Secondary Structure Prediction by Combining Multiple Predictions. Protein and Peptide Letters, 2006;13(10):985–991. doi: 10.2174/092986606778777551.
- [13] Huang DS, Yu H. Normalized Feature Vectors: A Novel Alignment-Free Sequence Comparison Method Based on The Numbers of Adjacent Amino Acids. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013;10(2):457–467. doi: 10.1109/TCBB.2013.10.
- [14] Huang DS, Zheng CH. Independent Component Analysis Based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data. Bioinformatics, 2006;22(15):1855–1862. doi: 10.1093/bioinformatics/btl190.
- [15] Huang X, Huang DS, ZHang GZ, Zhu YP, Li YX. Prediction of Protein Secondary Structure Using Improved Two-Level Neural Network Architecture. Protein and Peptide Letters, 2005;12(8):805–811. doi:10.2174/0929866054864328.
- [16] Kumar M, Bhasin M, Natt NK, Raghava BGPS. Prediction of _-hairpins in A Protein from Multiple Alignment Information Using ANN and SVM Techniques. Nucleic Acids Research, 2005;33(Web Server Issue):W154-159. doi: 10.1093/nar/gki588.
- [17] Jones DT. Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. Journal of Molecular Biology, 1999;292(2):195–202. doi: 10.1006/jmbi.1999.3091.
- [18] Kim D, Xu D, Guo J, Ellrott K, Xu Y. Prospect II: Protein Structure Prediction Program for Genome-Scale Applications. Protein Engineering, 2003;16(9):641–650. doi: 10.1093/protein/gzg081.
- [19] Lathrop RH. The Protein Threading Problem with Sequence Amino Acid Interaction Preferences is NPcomplete. Protein Engineering, 1994;7(9):1059–1068. doi: 10.1093/protein/7.9.1059.
- [20] Lindahl E, Elofsson A. Identification of Related Proteins on Family, Superfamily and Fold Level. Journal of Molecular Biology, 2000;295(3):613–625. doi: 10.1006/jmbi.1999.3377.
- [21] Liu C, Song Y. Parameterized Dominating Set Problem in Chordal Graphs: Complexity and Lower Bound. Journal of Combinatorial Optimization, 2009;18(1):87–97. doi: 10.1007/s10878-008-9141-5.
- [22] Liu C, Song Y. Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and Near Chordal Graphs. Journal of Combinatorial Optimization, 2011;22(4):684–698. doi: 10.1007/s10878-010-9317-7.
- [23] Matousek J, Thomas R. On The Complexity of Finding iso- and OtherMorphisms for Partial k-trees. Discrete Mathematics, 1992;108:343–364. doi: 10.1016/0012-365X(92)90687-B.
- [24] Robertson N, Seymour PD. Graph Minors II. Algorithmic Aspects of Tree-Width. Journal of Algorithms, 1986;7:309–322. doi: 10.1016/0196-6774(86)90023-4.
- [25] Shi J, Blundell TL, Mizuguchi K. FUGUE: Sequence-Structure Homology Recognition Using Environment-Specific Substitution Tables and Structure-Dependent Gap Penalties. Journal of Molecular Biology, 2001;310(1):243–257. doi: 10.1006/jmbi.2001.4762.
- [26] Söding J. Protein Homology Detection by HMM-HMM Comparison. Bioinformatics, 2005;21(7):951–960. doi: 10.1093/bioinformatics/bti125.
- [27] Song Y, Liu C, Huang X, Malmberg RL, Xu Y, Cai L. Efficient Parameterized Algorithms for Biopolymer Structure-Sequence Alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006;3(4):423–432. doi: 10.1109/TCBB.2006.52.
- [28] Song Y. A New Parameterized Algorithm for Rapid Peptide Sequencing. PLoS ONE, 2014; 9(2): e87476. doi: 10.1371/journal.pone.0087476.
- [29] Song Y, Chi AY. A New Approach for Parameter Estimation in The Sequence-Structure Alignment of Noncoding RNAs. Journal of Information Science and Engineering, 2015;31(2):597–607.
- [30] Song Y. An Improved Parameterized Algorithm for The Independent Feedback Vertex Set Problem. Theoretical Computer Science, 2014;536(22):25–30. doi: 10.1016/j.tcs.2014.03.031.
- [31] Tong JC, Tammi MT. Prediction of Protein Allergenicity Using Local Description of Amino Acid Sequence. Frontiers in Bioscience, 2008;13(16):6072–6078. doi: 10.2741/3138.
- [32] Wang B, Chen P, Huang DS, Li JJ, Lok TM, Lyu MR. Predicting Protein Interaction Sites from Residue Spatial Sequence Profile and Evolution Rate. FEBS Letters, 2006;580(2):380–384. doi: 10.1016/j.febslet.2005.11.081.
- [33] Wang B, Huang DS, Jiang C. A New Strategy for Protein Interface Identification Using Manifold Learning Method. IEEE Transactions on NanoBioscience, 2014;13(2):118–123. doi: 10.1109/TNB.2014.2316997.
- [34] Wang G, Dunbrack Jr RL. PISCES: a Protein Sequence Culling Server. Bioinformatics, 2000;16:257–268. doi: 10.1093/bioinformatics/btg224.
- [35] Wu S, Zhang Y. MUSTER: Improving Protein Sequence Profile-profile Alignments by Using Multiple Sources of Structure Information. Proteins, 2008;72(2):547–556. doi: 10.1002/prot.21945.
- [36] Xu Y, Xu D, Uberbacher EC. An Efficient Computational Method for Globally Optimal Threading. Journal of Computational Biology,1998;5:597–614. doi: 10.1089/cmb.1998.5.597.
- [37] Xu J, Li M, Kim D, Xu Y. RAPTOR: Optimal Protein Threading by Linear Programming. Journal of Bioinformatics and Computational Biology, 2003;1(1):95–117. doi: 10.1142/S0219720003000186.
- [38] Xu J, Li M, Kim D, Xu Y. Protein Threading by Linear Programming. In: Biocomputing: Proceedings of the 2003 Pacific Symposium, 2003. p. 264–275. doi: 10.1142/9789812776303 0025.
- [39] Xu J. Rapid Problem Side-Chain Packing via Tree Decomposition. In: Proceedings of the Ninth Annual International Conference on Research in Computational Molecular Biology, 2005. p. 423–429. doi:10.1007/11415770 32.
- [40] Xu J, Jiao F, Berger B. A Tree-Decomposition Approach to Protein Structure Prediction. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference, 2005. p. 247–256. doi: 10.1109/CSB. 2005.9.
- [41] Zhang X, Wang Y, Zhan Z, Wu L, Chen L. Exploring Protein’s Optimal HP Configurations by Self-Organiziing Mapping. Journal of Bioinformatics and Computational Biology, 2006;3(2):385–400. doi: 10.1142/S0219720005001107.
- [42] Zhang GZ, Huang DS. Prediction of Inter-residue Contacts Map Based on Genetic Algorithm Optimized Radial Basis Function Neural Network and Binary Input Encoding Scheme. Journal of Computer Aided Molecular Design, 2014;18(12):797–810. doi: 10.1007/s10822-005-0578-7.
- [43] Zhang GZ, Huang DS, Zhu Y, Li Y. Improving Protein Secondary Structure Prediction by Using Residue Conformational Classes. Pattern Recognition Letters, 2005;26(15):2346–2352. doi: 10.1016/j.patrec.2005.04.010.
- [44] Zhang GZ, Huang DS. Inter-residue Spatial Distance Prediction by Using Intergrating GA with RBFNN. Protein and Peptide Letters, 2004;11(6):571-576. doi: 10.2174/0929866043406283.
- [45] Zhu L, You Z, Huang DS, Wang B. t-LSE: A Novel Robust Geometric Approach for Modeling Protein-Protein Interaction Networks. PLoS ONE, 2013;8(4):e58368. doi: 10.1371/journal.pone.0058368.
- [46] Zhu J, Weng Z. FAST: A Novel Protein Structure Alignment Algorithm. Proteins: Structure, Function and Bioinformatics, 2005;58(3): 618–627. doi: 10.1002/prot.20331.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84cc771a-fd61-45c9-aa3c-e147a7f6e189