PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Performance assessment of lapinus–aramid based brake pad hybrid phenolic composites in friction braking

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The brake pad hybrid phenolic composites based on lapinus–aramid fibre combination are designed, fabricated and characterized for various physical, chemical, mechanical, thermo-mechanical and tribo-performance. The physical properties such as water absorption, compressibility, void and ash contents increase with increase in lapinus fibre, whereas mechanical (such as hardness, impact energy, tensile and flexural strengths) and thermo-mechanical (loss-tangent, storage and loss modulus) properties increase with increase in aramid fibre. The assessment of braking performance is done using a standard test protocol conforming to ECE R-90 regulation on the Krauss friction testing machine. Comprehensively, it is found that incorporation of higher metallic-silicate lapinus fibre in formulation relative to aramid enhances the overall frictional response. The same successfully arrests highest rise in the disc temperature even though wear losses are maximized. The same show lowest fading and excellent recovery performance. Optimally the formulation having lapinus-to-aramid proportion 25:5 experimentally optimizes the overall braking performance. The SEM micrograph study justifies the overall braking tribology and the associated wear mechanisms.
Słowa kluczowe
Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Manav Bharti University, Solan 173229, India
autor
  • Department of Mechanical Engineering, M.N.I.T. Jaipur, Rajasthan 302001, India
Bibliografia
  • [1] J. Bijwe, Composites as friction materials: recent developments in non-asbestos fibre reinforced friction materials-a review, Polymer Composites 18 (3) (1997) 378–396.
  • [2] T. Singh, Tribo-performance evaluation of fibre reinforced and nano-filled composite friction materials, (Ph.D. thesis), NIT Hamirpur, 2013.
  • [3] M. Kumar, J. Bijwe, Role of different metallic fillers in non-asbestos organic (NAO) friction composites for controlling sensitivity of coefficient of friction to load and speed, Tribology International 43 (5–6) (2010) 965–974.
  • [4] B.K. Satapathy, J. Bijwe, Performance of friction materials based on variation in nature of organic fibres. Part I: Fade and recovery behaviour, Wear 257 (2004) 573–584.
  • [5] Y. Han, X. Tian, Y. Yin, Effect of ceramic fibre on the friction performance of automotive brake lining materials, Tribology Transactions 51 (2008) 779–783.
  • [6] S.J. Kim, M.H. Cho, R.H. Basch, J.W. Fash, H. Jang, Tribological properties of polymer composites containing barite (BaSO4) or potassium titanate (K2O.6(TiO2)), Tribology Letters 17 (3) (2004) 655–661.
  • [7] S.C. Ho, L.J.H. Chern, C.P. Ju, Effect of phenolic content on tribological behavior of carbonized copper-phenolic based friction material, Wear 258 (2005) 1764–1774.
  • [8] J. Bijwe, N.N. Majumdar, B.K. Satapathy, Influence of modified phenolic resins on the fade and recovery behavior of friction materials, Wear 259 (7–12) (2005) 1068–1078.
  • [9] M.H. Cho, J. Ju, S.J. Kim, H. Jang, Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260 (2006) 855–860.
  • [10] E.J. Lee, H.J. Hwang, W.G. Lee, K.H. Cho, H. Jang, Morphology and toughness of abrasive particles and their effects on the friction and wear of friction materials: a case study with zircon and quartz, Tribology Letters 37 (3) (2009) 637–644.
  • [11] H.J. Hwang, S.L. Jung, K.H. Cho, Y.J. Kim, H. Jang, Tribological performance of brake friction materials containing carbon nanotubes, Wear 268 (2010) 519–525.
  • [12] T. Singh, A. Patnaik, B.K. Satapathy, Effect of carbon nanotube on tribo-performance of brake friction materials, AIP Conference Proceedings 1393 (2011) 223–224.
  • [13] T. Singh, A. Patnaik, B.K. Satapathy, M. Kumar, B.S. Tomar, Effect of nanoclay reinforcement on the friction braking performance of hybrid phenolic friction composites, Journal of Materials Engineering and Performance 22 (3) (2013) 796–805.
  • [14] T. Singh, A. Patnaik, B.K. Satapathy, Friction braking performance of nanofilled hybrid fibre reinforced phenolic composites: influence of nanoclay and carbon nanotubes, NANO 8 (3) (2013) 1–15.
  • [15] B.K. Satapathy, J. Bijwe, Performance of friction materials based on variation in nature of organic fibres. Part II: Optimization by balancing and ranking using multiple criteria decision model (MCDM), Wear 257 (2004) 585–589.
  • [16] T. Singh, A. Patnaik, B.K. Satapathy, M. Kumar, Performance analysis of organic friction composite materials based on carbon nanotubes–organic–inorganic fibrous reinforcement using hybrid AHP-FTOPSIS approach, Composites: Mechanics, Computations, Applications. An International Journal 3 (3) (2012) 189–214.
  • [17] T. Singh, A. Patnaik, B.K. Satapathy, Development and optimization of hybrid friction materials consisting of nanoclay and carbon nanotubes by using analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) under fuzzy atmosphere, Walailak Journal of Science and Technology 10 (4) (2013) 343–362.
  • [18] P. Gopal, L.R. Dharani, F.D. Blum, Fade and wear characteristics of a glass fibre reinforced phenolic friction materials, Wear 174 (1994) 119–127.
  • [19] Q.F. Guan, G.Y. Li, H.Y. Wang, J. An, Friction-wear characteristics of carbon fibre reinforced friction material, Journal of Materials Science 39 (2004) 641–643.
  • [20] X. Xin, C.G. Xu, L.F. Qing, Friction properties of sisal fibre reinforced resin brake composites, Wear 262 (2007) 736–741.
  • [21] B.J. Briscoe, P.J. Tweedale, Aramid fibre friction: a replacement for asbestos in high friction materials, in: Proceedings of Conference on Tribology of Composites Materials, ASM International, (1990), pp. 252–263.
  • [22] T. Kato, A. Magario, The wear of Kevlar fibre reinforced brake pads: the role of Kevlar fibres, Tribology Transactions 37 (1994) 559–565.
  • [23] P. Gopal, L.R. Dharani, F.D. Blum, Hybrid phenolic friction composites containing Kevlar pulp. Part 1. Enhancement of friction and wear performance, Wear 193 (1996) 199–206.
  • [24] S.J. Kim, M.H. Cho, D.S. Lim, H. Jang, Synergistic effects of Kevlar pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484–1491.
  • [25] A. Patnaik, M. Kumar, B.K. Satapathy, B.S. Tomar, Performance sensitivity of hybrid phenolic composites in friction braking: effect of ceramic and Kevlar fibre combination, Wear 269 (11–12) (2010) 891–989.
  • [26] Lapinus-intelligent fibres-Friction applications. www. lapinusfibres.com.
  • [27] F. Dong, F.D. Blum, L.R. Dharani, Lapinus fibre reinforced phenolic composites: flexural and friction properties, Polymer and Polymer Composites 4 (3) (1996) 155–161.
  • [28] B.K. Satapathy, J. Bijwe, Fade and recovery behavior of non-asbestos organic (NAO) composite friction materials based on combinations of rock fibres and organic fibres, Journal of Reinforced Plastics and Composites 24 (6) (2005) 563–577.
  • [29] N. Dadkar, B.S. Tomar, B.K. Satapathy, A. Patnaik, Performance assessment of hybrid composite friction materials based on fly ash-rock fibre combination, Materials and Design 31 (2010) 723–731.
  • [30] Replacement brake lining assemblies, PVW 3212; ECE Regulation No. 90, INTEREUROPE Regulations Limited 1997, UN 31, March 1993.
  • [31] M. Arjmand, A. Shojaei, Tribological characteristics of rubber-based friction materials, Tribology Letter 41 (2011) 325–336.
  • [32] S. Kumar, B.K. Satapathy, A. Patnaik, Viscoelastic interpretations of erosion performance of short aramid fibre reinforced vinyl ester resin composites, Journal of Material Science 46 (2011) 7489–7500.
  • [33] M.W. Shin, K.H. Cho, W.K. Lee, H. Jang, Tribological characteristics of binder resins for brake friction materials at elevated temperatures, Tribology Letters 38 (2010) 161–168.
  • [34] T. Singh, A. Patnaik, B.K. Satapathy, Thermo-mechanical characterization of nano filled and fibre reinforced brake friction materials, AIP Conference Proceeding 1536 (2013) 259–260.
  • [35] M. Eriksson, S. Jacobson, Tribological surfaces of organic brake pads, Tribology International 33 (2000) 817–827.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84c655e2-744e-4804-ac9f-5f4dc1465c0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.