Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A theoretical considerations and numerical calculations concerning the issue of the stability of the geometrically nonlinear system with non-prismatic element are presented in this work. The analysed columns were subjected to the Euler’s load. On the basis of the minimum potential energy principle as well as the small parameter method, the differential equations of displacements were formulated and its solutions were obtained. The assumption that the approximation of the non-prismatic rod satisfies the condition of constant total volume resulting from the value of the coefficient of flexural stiffness distribution has been made. The results of the carried out numerical simulations refer to the local and global stability loss. It has been proved that taking into consideration in the geometrically nonlinear system appropriate shaped rod of variable cross-section causes an increase in the value of bifurcation load and in a consequence an „exit” from the area of the local instability (loss of rectilinear form of static equilibrium).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
79--88
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Foundations
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Foundations
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Foundations
Bibliografia
- 1. Evensen, D. A. (1968). Nonlinear vibrations of beams with various boundary conditions. AIAA journal, 6(2):370–372.
- 2. Katsikadelis, J. T. (2002). The analog boundary integral equation method for nonlinear static and dynamic problems in continuum mechanics. Journal of Theoretical and Applied Mechanics, 40(4):961–984.
- 3. Przybylski, J. (2000). The role of prestressing in establishing regions of instability for a compound column under conservative or non-conservative load. Journal of sound and vibration, 231(2):291–305.
- 4. Shen, H.-S. (2013). A two-step perturbation method in nonlinear analysis of beams, plates and shells. John Wiley & Sons.
- 5. Sokół, K. (2009). Wpływ siły piezoelektrycznej na częstość drgań kolumny nieliniowej z prętem piezoceramicznym. Modelowanie Inżynierskie, 7(38):175–182.
- 6. Sokół, K. (2010). The local and global instability and vibration of a nonlinear column subjected to euler’s load. Scientific Research of the Institute of Mathematics and Computer Science, 9(1):187–194.
- 7. Stojanović, V. (2015). Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity. Communications in Nonlinear Science and Numerical Simulation, 28(1):66–80.
- 8. Szmidla, J. and Cieślińska-Gąsior, I. (2016). Free vibrations of geometrically nonlinear column locally resting on the winkler elastic foundation under the specific load. Vibrations in Physical Systems, 27:355–362.
- 9. Uzny, S. (2011). Local and global instability and vibrations of a slender system consisting of two coaxial elements. Thin-Walled Structures, 49(5):618–626.
- 10. Uzny, S. and Sokół, K. (2014). The regions of local and global instability of a twomember slender system with crack. Machine Dynamics Research, 2(38):75–83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84c23b27-56e8-475b-ba14-dd5851fd4ebf