Identyfikatory
Warianty tytułu
Cultivation of green algae Chlorella sp. in a stirred tank bioreactor
Języki publikacji
Abstrakty
Zbadano wydajność produkcji biomasy alg Chlorella sp., hodowanej na bazie pożywki syntetycznej BG-11, w zautomatyzowanym bioreaktorze zbiornikowym z mieszadłem mechanicznym w warunkach sztucznego naświetlania i napowietrzania. Kontrola hodowli polegała na spektrofotometrycznym pomiarze gęstości optycznej (OD) oraz badaniu zmian stężenia związków biogennych w podłożu hodowlanym, będących wynikiem zachodzących procesów metabolicznych. Hodowlę prowadzono przez 46 dni do momentu wyczerpania fosforu. Końcowa wydajność produkcji biomasy przekroczyła 3 g/dm3 przy jej średnim dobowym przyroście > 60 mg/dm3, a OD686 osiągnęła wartość 2,13. Na podstawie przeprowadzonych badań stwierdzono, że na wysoką efektywność produkcji biomasy alg kluczowy wpływ miały kontrolowane warunki hodowli, m.in. naświetlanie światłem o specyficznej długości fali (420÷480 nm, 630÷690 nm), wymuszony obieg powietrza, ograniczenie możliwości odparowania wody z naczynia hodowlanego oraz zapewnienie sterylnych warunków podczas inicjowania hodowli.
Algae, as a renewable raw materials, are valuable sources of biomass for many branches of industry. In the area of environmental protection they are used among others for biological treatment of water, removal and recovery of heavy metals from industrial wastewater, production of bio-fertilizers and fodder additives. Due to their rapid growth, they are able to efficiently use less fertile areas more than energetic plants (e.g. rapeseed, soya). To properly grow, under in vitro conditions, algae need access to water, nutrients (i.a. nitrogen and phosphorus) and carbon dioxide as well as appropriate temperature, pH, mixing and lighting. In our climate conditions, algal cultivation in natural water reservoirs is ineffective, due to daily and annual temperature and sunlight changes. An efficient alternative is the use of bioreactors that limit or eliminate the possibility of bacterial infection in algae culture. The aim of the study was to investigate the biomass yield of algae Chlorella sp., cultivated in BG-11 synthetic medium, inside the tank bioreactor, under the artificial lighting and aeration conditions. The periodic culture was conducted at 25°C with mechanical stirring (150 rpm). Compressed air was supplied to the suspension (in alternating cycles: 5 successive aeration days, 2 days without aeration). The process of algal cell multiplication was supported by the light exposure for 16 hours per day (8 h - dark phase). The source of light was LED lamp (30 W), suitable for stimulating the growth of chlorophyll concentration (blue light 420÷480 nm, red light - 630÷690 nm), located in the length of 10 cm from the culture vessel. Separation process of the dried biomass from culture medium was consisted in: sedimentation, centrifugation (8000 rpm, 10 min), freezing with liquid nitrogen and lyophilisation (–80°C, < 10 Pa). The algal growth was assessed on the basis of the changes in optical density (absorption of visible light at 686 nm) and the concentrations of biogenic compounds. The culture was carried out until the phosphorus, which was a limiting factor for algal growth in suspended form, was exhausted. Within 46 days, the algae absorbed ∼ 12% of nitrogen by weight from the culture medium, and the final ammonium nitrogen concentration was ∼ 0.2 mg/dm3. The efficiency of biomass production was ∼ 3190 mg/dm3 (∼ 63 g/dm3 per day), while optical density ∼ 2.13. Based on the results, it was found that high efficiency of biomass production was influenced by light with a well-chosen wavelength spectrum, forced air circulation, limited evaporation of water from the vessel and sterile conditions during initiation of the culture. Further studies are needed to involve determining the concentration of different forms of nitrogen (nitrates, nitrites, ammonium nitrogen) in the culture medium and investigating the impact of process conditions on enhanced assimilation of biogenic compounds by algae, at following stages of their growth. A profound knowledge on these relationships and estimated costs will allow to continue experiments on increasing the productivity of algae biomass, which will be commonly recognized as economically reasonable.
Czasopismo
Rocznik
Tom
Strony
237--248
Opis fizyczny
Bibliogr. 34 poz., fot., wykr.
Twórcy
autor
- Instytut Technologii Eksploatacji - PIB, ul. K. Pułaskiego 6/10, 26-600 Radom
Bibliografia
- [1] Schlarb-Ridley B., Parker B., A UK road map of algal technologies, NERC-TSB Algal Bioenergy- SIG 2013.
- [2] Young G. et al., Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules, Sep. Purif. Technol. 2015, 72, 118-121.
- [3] Schroeder G. i in., Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa, Przem. Chem. 2013, 92, 7, 1380.
- [4] Bharathiraja B. et al., Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products, Renew. Sust. Energ. Rev. 2015, 47, 634-653.
- [5] Chojnacka K., Innowacyjna technologia ekstraktów glonowych, Przem. Chem. 2014, 93(4), 590-592.
- [6] Lu Q. et al., Growing Chlorella sp. on meat wastewater for nutrient removal and biomass production, Biores. Technol. 2015, 198, 189-197.
- [7] Kumar A. et al., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol. 2010, 28, 371-380.
- [8] Lu Q. et al., Mitigating ammonia nitrogen deficiency in dairy wastewater for algae cultivation, Biores. Technol. 2016, 201, 33-40.
- [9] Urbańska M., Kłosowski G., Algi jako materiał biosorpcyjny - usuwanie i odzysk metali ciężkich ze ścieków przemysłowych, Ochr. Środ. Zas. Nat. 2012, 1(51), 62-77.
- [10] Piasecka A., Krzemińska I., Tys J., Psyhical methods of microalgal biomass pretreatment, Int. Agrophys. 2014, 28, 341-348.
- [11] Kim D.Y. et al., Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus, Biores. Technol. 2016, 199, 300-310.
- [12] Kozieł W., Włodarczyk T., Glony - produkcja biomasy, Acta Agroph. 2011, 17, 1, 105-116.
- [13] Makowska M., Dziosa K., Wytwarzanie biomasy mikroalg w warunkach laboratoryjnych, Przem. Chem. 2015, 94, 6, 982-985.
- [14] Řezanka T. et al., Production of structured triacylglycerols from microalgae, Phytochemistry 2014, 104, 95-104.
- [15] Arumugam M. et al., Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus, Biores. Technol. 2013, 131, 246-249.
- [16] Babu A., Wu X., Kabra A.N., Kim D.P., Cultivation o an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitations, Algal Res. 2017, 23, 178-185.
- [17] Singh P. et al., Trends and novel strategies for enhancing lipid accumulation and quality in microalgae, Renew. Sust. Energ. Rev. 2016, 55, 1-16.
- [18] Li T. et al., Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies, Algal Res. 2016, 16, 481-491.
- [19] Adams C. et al., Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae, Biores. Technol. 2013, 131, 188-194.
- [20] Wiczkowski J., Pilarek M. Zamojska-Jaroszewicz A., Szewczyk K.W., Hodowla mikroalg w fotobioreaktorze typu air-lift driven, Inż. Aparat. Chem. 2012, 51(4), 192-194.
- [21] Lewicki A., Dach J., Janczak D., Czekała W., The experimental macro photoreactor for microalgae production, Proc. Technol. 2013, 8, 622-627.
- [22] Kwietniewska E., Tys J., Krzemińska I., Kozieł W., Microalgae - cultivation and application of biomass as a source of energy: A review, Acta Agrophysica Monographiae, Instytut Agrofizyki PAN 2012, 2.
- [23] Daniłowicz A. i in., Podczyszczanie wód osadowych pochodzących z odwadniania przefermentowanych osadów ściekowych w fotobioreaktorach glonowych, Arch. Waste Manage. Environ. Protect. 2016, 18(2), 45-54.
- [24] Ramanan R. et al., Algae - bacteria interactions: Evolution, ecology and emerging applications, Biotech. Adv. 2016, 34, 14-29.
- [25] Belotti G. et al., Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis, Biomass Bioenerg. 2014, 61, 187-195.
- [26] Dziosa K., Makowska M.: Monitoring of Chlorella sp. growth based on the optical density measurement, Probl. Ekspl. 2016, 2, 197-206.
- [27] Gumiński S., Fizjologia glonów i sinic, Wyd. Uniwersytetu Wrocławskiego, Wrocław 1990.
- [28] Scarsella M. et al., Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors, Chem. Eng. Trans. 2010, 20, 85-90.
- [29] Rodrigues L. et al., Algal density assessed by spectrophotometry: A calibration curie for the unicellular algae Pseudokirchneriella subcapitata, J. Environ. Chem. Ecotoxicol. 2011, 3(8), 225-228.
- [30] Frąc M., Jezierska-Tys S., Tys J., Algi - energia jutra (biomasa, biodiesel), Acta Agroph. 2009, 13(3), 627-638.
- [31] Rokicka M. i in., Efekt zmiennej koncentracji fosforu na efektywność syntezy lipidów mikroglonów Chlorella vulgaris, Inż. Ekol. 2017, 18(2), 123-129.
- [32] Kozieł W., Włodarczyk T., Glony - produkcja biomasy, Acta Agrophys. 2011, 17(1), 105-116.
- [33] Dębowski M., Zieliński M., Rokicka M., Produkcja biomasy mikroglonów na bazie ścieków pochodzących z przemysłu mleczarskiego, Inż. Ekol. 2016, 47, 54-59.
- [34] Mata T.M. et al., Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energ. Rev. 2010, 14, 217-232.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84bd817a-1fd3-4f76-80e4-3af8c003f802