PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical analysis of pool boiling correlations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript describes the problem of boiling heat flux determination with the focus on nucleate boiling mode. It presents the boiling phenomenon on the bare surface and provides a review of the correlations that can be used for modelling purposes. Two most commonly applied correlations were validated against the experimental results. One of them showed significant discrepancies, which might be attributed to the conditions of the research and possible variations in the morphology of the heater. The other correlation proved to be successful in determining heat flux.
Słowa kluczowe
Wydawca
Rocznik
Strony
258--265
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
  • VŠB-Technical University of Ostrava, Czech Republic
  • Krakow University of Technology, Poland
Bibliografia
  • 1. Benjamin, R.J., Balakrishnan, A.R., 1997. Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties, Experimental Thermal and Fluid Science, 15, 32 – 42. DOI: 10.1016/S0894-1777(96)00168-9
  • 2. Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D., 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012 – 21st International Conference on Metallurgy and Materials, Ostrava, Tanger, 1722-1728.
  • 3. Chai, L.H., Peng, X.F., Wang, B.X., 2000. Nonlinear aspects of boiling systems and a new method for predicting the pool nucleate boiling heat transfer, Int. J Heat and Mass Transfer, 43, 75 – 84. DOI: 10.1016/S0017-9310(99)00125-8
  • 4. Dabek, L., Kapjor, A., Orman, L.J., 2016. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces, AIP Conf. Proc., 1745, art. 020005. DOI: 10.1063/1.4953699
  • 5. Danish, M., Al Mesfer, M.K., 2019. Developing a Mathematical Model for Nucleate Boiling Regime at High Heat Flux, Processes, 7, 726. DOI: 10.3390/pr7100726
  • 6. Dominik, I., Kwasniewski, J., Krzysztof, L., Dwornicka, R., 2013. Preliminary signal filtering in Self-Excited Acoustical System for stress change measurement, Chinese Control Conference, CCC, X’ian, 7505-7509.
  • 7. Gądek-Moszczak, A., Wojnar, L., Piwowarczyk, A., 2019. Comparison of selected shading correction methods, System Safety: Human - Technical Facility - Environment, 1(1), 819-826. DOI: 10.2478/czoto-2019-0105
  • 8. Golkar, S.H., Khayat, M., Zareh, M., 2021. Nucleate and Film Boiling Performance of Ethanol-Based Nanofluids on Horizontal Flat Plate: An Experimental Investigation, Int J Thermophys, 42, 55, DOI: 10.1007/s10765-021-02805-0
  • 9. Heider, S.I., Webb, R.L., 1997. A transient micro-convection model of nucleate pool boiling, Int. J Heat Mass Transfer, 40, 3675 – 3688. DOI:10.1016/S0017 9310(96)00372-9
  • 10. Hożejowski, L., Hożejowska, S., 2019. Trefftz method in an inverse problem of two phase flow boiling in a minichannel, Engineering Analysis with Boundary Elements, 98, 27-34, DOI: 10.1016/j.enganabound.2018.10.001
  • 11. Kamel, M.S., Albdoor, A.K., Nghaimesh, S.J., Houshi, M.N., 2022. Numerical Study on Pool Boiling of Hybrid Nanofluids Using RPI Model, Fluids, 7, 87. DOI: 10.3390/fluids706018
  • 12. Kuciel, S., Bazan, P., Liber-Kneć, A., Gadek-Moszczak, A., 2019. Physico-mechanical properties of the poly(oxymethylene) composites reinforced with glass fibers under dynamical loading, Polymers, 11(12), art. 2064. DOI: 10.3390/polym11122064
  • 13. Maciejewska, B., Piasecka, M., 2017. Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel, International Journal of Heat and Mass 10.1016/j.ijheatmasstransfer.2016.11.003.
  • 14. Orman, L.J., Chatys, R., 2011. Heat transfer augmentation possibility for vehicle heat exchangers, Transport Means - Proc. of the 15th Int. Conf., Kaunas, Lietuva, 9-12.
  • 15. Pacana, A., Czerwinska, K., Dwornicka, R., 2021. Analysis of quality control efficiency in the automotive industry, Transportation Research Procedia, 55, 691-698. DOI: 10.1016/j.trpro.2021.07.037
  • 16. Pastuszko, R., Kaniowski, R., Wójcik, T.M., 2020. Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer, App Therm Eng., 166, 114658. DOI: 10.1016/j.applthermaleng.2019.114658
  • 17. Pietraszek, J., Radek, N., Goroshko, A.V., 2020. Challenges for the DOE methodology related to the introduction of Industry 4.0, Production Engineering Archives, 26(4), 190-194. DOI: 10.30657/pea.2020.26.33
  • 18. Pietraszek, J., Skrzypczak-Pietraszek, E., 2015. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction, Solid State Phenomena, 235, 1-8. DOI: 10.4028/www.scientific.net/SSP.235.1
  • 19. Pioro, I.L., 1999. Experimental evaluation of constants for the Rohsenow pool boiling correlation, Int. Journal of Heat and Mass Transfer, 42, 2003 – 2013, 1999. DOI: https://doi.org/10.1016/S0017-9310(98)00294-4
  • 20. Radek, M., Pietraszek, A., Kozień, A., Radek, K., Pietraszek, J., 2023. Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Materials Research 10.21741/9781644902691-52
  • 21. Radek, N., Pietraszek, J., Pasieczynski, Ł., 2019. Technology and application of anti graffiti coating systems for rolling stock, METAL 2019 - 28th Int. Conf. on Metallurgy and Materials, 1127-1132. DOI: 10.37904/metal.2019.909
  • 22. Radek, N., Pietraszek, J., Szczotok, A., Fabian, P., Kalinowski, A., 2020. Microstructure and tribological properties of DLC coatings, Materials Research Proceedings, 17, 171-176. DOI: 10.21741/9781644901038-26
  • 23. Radzyminska-Lenarcik, E., Ulewicz, R., Ulewicz, M., 2018. Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4 methylimidazole, Desalination and Water Treatment, 102, 211-219. DOI: 10.5004/dwt.2018.21826
  • 24. Rohsenow, W.M., 1952. A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74, 969-975.
  • 25. Siwiec, D., Dwornicka, R., Pacana, A., 2020. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Materials Research Proceedings, 17, 16-22. DOI: 10.21741/9781644901038 3
  • 26. Stephan, K., Abdelsalam, M., 1980. Heat transfer correlations for natural convection boiling, Int. J. Heat Mass Transfer, 23, 73 – 87, 1980. DOI: 10.1016/0017 9310(80)90140-4
  • 27. Strąk, K., Piasecka, M., Maciejewska, B., 2018. Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels, International Journal of Heat and Mass Transfer, 117, 375-387, DOI: 10.1016/j.ijheatmasstransfer.2017.10.019.
  • 28. Szataniak, P., Novy, F., Ulewicz, R., 2014. HSLA steels - Comparison of cutting techniques, METAL 2014 – 23rd International Conference on Metallurgy and Materials, 778-783.
  • 29. Ulewicz, R., 2018. Outsorcing quality control in the automotive industry, MATEC Web of Conf., 183, art. 03001. DOI: 10.1051/matecconf/201818303001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84bd551a-1552-422e-9ea4-8503706a2ebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.