PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of digested sludge conditioning on the dewatering processes and the quality of sludge liquid

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To increase the dewatering effect, sewage sludge should be properly prepared before dewatering. Sludge conditioning is a process whereby sludge solids are treated with chemicals or various other means to improve dewatering characteristics of the sludge by reducing the specific resistance and compressibility of the sludge. The aim of the research was to determine the possibility of increasing the efficiency of sewage sludge dewatering by applying chemical agents and ultrasonic field. Some parameters, such as suspension, chemical oxygen demand (COD), phosphorus and ammonium nitrogen content in sludge supernatant, were also analysed. Digested sludge belonged to the group of hardly dewatered sludge, its capillary suction time (CST) was of high value (2639 s). The lowest CST value (88.5 s) was obtained for the unsonicated sludge prepared only with PIX 113 at a dose of 7.0 mg/g d.m. Both the dose and the type of chemicals used, as well as the time of sonication, had an impact on the changes occurring in sludge properties. The increase in mechanical dewatering efficiency was obtained by using a combination of methods applied for sludge preparation, where the sonication of sludge was used at the preliminary stage and followed by dosing chemical substances. This resulted in the reduction of sludge final hydration and changes of other parameters. In addition, combined action of PIX 113 and Zetag 8180 allowed to reduce the content of suspended solids and COD in sludge supernatant.
Rocznik
Strony
151--164
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Chemistry, Water and Wastewater Technology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-200 Częstochowa, Poland, phone +48 34 325 09 11
  • Institute of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-200 Częstochowa, Poland, phone +48 34 325 09 33
Bibliografia
  • [1] Grobelak A, Grosser A, Kacprzak M, Kamizela T. Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. J Environ Manage. 2019;234:90-6. DOI: 10.1016/j.jenvman.2018.12.111.
  • [2] Bień B. The quality of sludge liquids produced in the process of mechanical dewatering of digested sludge. Ecol Chem Eng A. 2017;24(1):65-74. DOI: 10.2428/ecea.2017.24(1)5.
  • [3] Ren W, Zhou Z, Wan L, Hu D, Jiang LM, Wang L. Optimization of phosphorus removal from reject water of sludge thickening and dewatering process through struvite precipitation. Desalin Water Treat. 2016;57(33):15515-23. DOI: 10.1080/19443994.2015.1072059.
  • [4] Wielgosiński G, Cichowicz R, Targaszewska A, Wiśniewski J. The use of LCA method to assess environmental impact of sewage sludge incineration plants. Ecol Chem Eng S. 2017;24(2):263-75. DOI: 10.1515/eces-2017-0018.
  • [5] Ohm TI, Chae JS, Kim JE, Kim HK, Moon SH. A study on the dewatering of industrial waste sludge by fry-drying technology. J Hazard Mater. 2009;168(1):445-50. DOI: 10.1016/j.jhazmat.2009.02.053.
  • [6] Yuan H, Zhu N, Song L. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability. Bioresour Technol. 2010;101(12):4285-90. DOI: 10.1016/j.biortech.2009.12.147.
  • [7] Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manage. 2014;34(1):185-95. DOI: 10.1016/j.wasman.2013.08.024.
  • [8] Escala M, Zumbühl T, Koller Ch, Junge R, Krebs R. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: A feasibility study on a laboratory scale. Energy Fuels. 2013;27(1):454-60. DOI: 10.1021/ef3015266.
  • [9] Fukas-Płonka Ł, Janik M. Advantages and disadvantages of drying sewage sludge. Forum Eksploatatora. 2008;5:25-7. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPC1-0012-0065.
  • [10] Hehlmann J, Benducki P. Drying of a composite formed fuel with dominant fraction of digested sewage sludge. Arch Waste Manage Environ Prot. 2014;16(2):9-18. http://awep.org.
  • [11] Saveyn H, Meersseman S, Thas O, Van DMP. Influence of polyelectrolyte characteristics on pressure-driven physicochemical dewatering. Colloid Surf A: Physicochem Eng Aspects. 2005;262:40-51. DOI: 10.1016/j.colsurfa.2005.04.006.
  • [12] Bień B, Bień J. Coagulant and polyelectrolyte application performance testing in sonicated sewage sludge dewatering. Desalin Water Treat. 2016;57(3):1154-62. DOI: 10.1080/19443994.2014.989632.
  • [13] Saveyn H, Curvers D, Thas O, Van der Meeren P. Optimization of sewage sludge conditioning and pressure dewatering by statistical modelling. Water Res. 2008;42(4-5):1061-74. DOI: 10.1016/j.watres.2007.09.029.
  • [14] Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem Eng J. 2010;158:616-22. DOI : 10.1016/j.cej.2010.02.021.
  • [15] Mohammad TA, Mohamed EH, Megat J, Megat MN, Ghazali AH. Dual polyelectrolytes incorporating Moringa oleifera in the dewatering of sewage sludge. Desalin Water Treat. 2015;55(13):3613-20. DOI: 10.1080/19443994.2014.946728.
  • [16] Hussain J, Jami MS, Suleyman A, Muyibi SA. Enhancement of dewatering properties of kaolin suspension by using cationic polyacrylamide (PAM-C) flocculant and surfactants. AJBAS. 2012;6(1):70-3. http://irep.iium.edu.my/17706/.
  • [17] Kowalczyk A, Piecuch T. Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels. Arch Environ Prot. 2016;42(1):3-18. DOI: 10.1515/aep-2016-0001.
  • [18] Gao N, Li Z, Quan C, Miskolczi N, Egedy A. A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification. J Anal Appl Pyrol. 2019;139:187-95. DOI:10.1016/j.jaap.2019.02.003.
  • [19] Nguyena TP, Hilala N, Hankinsb NP, Novakc JT. Characterization of synthetic and activated sludge and conditioning with cationic polyelectrolytes. Desalination. 2008:227:103-10. DOI: 10.1016/j.desal.2007.07.016.
  • [20] Bien B, Bien JD. Use of inorganic coagulants and polyelectrolytes to sonicated sewage sludge for improvement of sludge dewatering. Desalin Water Treat. 2014:52(19-21):3767-74. DOI: 10.1080/19443994.2014.884752.
  • [21] Chen Z, Zhang W, Wang D, Ma T, Bai R. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical reflocculation with inorganic coagulants: Kinetics of enzymatic reaction and reflocculation morphology. Water Res. 2015;83:367-76. DOI: 10.1016/j.watres.2015.06.026.
  • [22] Boráň J, Houdková L, Elsäßer T. Processing of sewage sludge: Dependence of sludge dewatering efficiency on amount of flocculant. Resour Conserv Recycl. 2010;54(5): 278-82. DOI: 10.1016/j.resconrec.2009.08.010.
  • [23] Jin LY, Zhang P, Zhang G, Li J. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalin Water Treat. 2016;57(60):29377-83. DOI: 10.1080/19443994.2016.1144085.
  • [24] Kuglarz M, Bohdziewicz J, Przywara L. The influence of dual conditioning methods on sludge dewatering properties. ACEE. 2008;1(3):103-6. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztecharticle-BSL2-0022-0104.
  • [25] Wu Y, Zhang P, Zeng G, Liu J, Ye J, Zhang H, et al. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO4/FeCl3/Biochar) for enhancement of waste activated sludge dewaterability. J Taiwan Inst Chem Eng. 2017;74:121-8. DOI: 10.1016/j.jtice.2017.02.004.
  • [26] Wójcik M, Stachowicz F. Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency. Powder Technol. 2019;344:96-102. DOI: 10.1016/j.powtec.2018.12.001.
  • [27] Chen Z, Zhang W, Wang D, Ma T, Bai R, Yu D. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical reflocculation. Water Res. 2016;103:170-81. DOI: 10.1016/j.watres.2016.07.018.
  • [28] Changya Ch, Panyue Z, Guangming Z, Jiuhua D, Yu Z, Haifeng L. Sewage sludge conditioning with coal fly ash modified by sulfuric. Acid Chem Eng J. 2010;158(3):616-22. DOI: 10.1016/j.cej.2010.02.021.
  • [29] Ying Q, Khagendra BT, Andrew FAH. Application of filtration aids for improving sludge dewatering properties - A review. Chem Eng J. 2011;171(2):373-84. DOI: 10.1016/j.cej.2011.04.060.
  • [30] Yang J, Chen S, Li H. Dewatering sewage sludge by a combination of hydrogen peroxide, jute fiber wastes and cationic polyacrylamide. ESPR. 2018;128:78-84. DOI: 10.1016/j.ibiod.2016.10.027.
  • [31] Ding A, Qu F, Guo S, Ren Y, Xu G, Li G. Effect of adding wood chips on sewage sludge dewatering in a pilot-scale plate-and-frame filter press proces. RSC Adv. 2014;4(47):24762-8. DOI: 10.1039/c4ra03584d.
  • [32] Bianchini A, Bonfiglioli L, Pellergini M, Saccani C. Sewage sludge management in Europe: a critical analysis of data quality. IJEWM. 2016;18(3):226-38. DOI: 10.1504/IJEWM.2016.10001645.
  • [33] Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H. Sewage sludge conditioning with coal fly ash modified by sulphuric acid. Chem Eng J. 2016;158:616-22. DOI: 10.1016/j.cej.2010.02.021.
  • [34] Zhao YQ. Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder. Colloids Surf. A Physicochem Eng Asp. 2002;211(2-3):205-12. DOI: 10.1016/S0927-7757(02)00277-7.
  • [35] Zhu C, Li F, Zhang P, Ye J, Lu P, Wang H. Combined sludge conditioning with NaCl cationic polyacrylamide-rice husk powders to improve sludge dewaterability. Powder Technol. 2018;336:191-8. DOI: 10.1016/j.powtec.2018.05.042.
  • [36] MacDonald BA, Oakes KD, Adams M. Molecular disruption through acid injection into waste activated sludge - a feasibility study to improve the economics of sludge dewatering. J Clean Prod. 2017;176:966-75. DOI: 10.1016/j.jclepro.2017.12.014.
  • [37] Li CX, Wang XD, Zhang GY, Yu GW, Lin JJ, Wang Y. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res. 2017;117:49-57. DOI: 10.1016/j.watres.2017.03.047.
  • [38] Mobaraki M, Semken RS, Mikkola A, Pyrhonen J. Enhanced sludge dewatering based on the application of high-power ultrasonic vibration. Ultrasonics. 2018;84:438-45. DOI: 10.1016/j.ultras.2017.12.002.
  • [39] Liu JB, Wei YS, Li K, Tong J, Wang YW, Jia RL. Microwave-acid pretreatment: a potential process for enhancing sludge dewaterability. Water Res. 2016;90:225-34. DOI: 10.1016/j.watres.2015.12.012.
  • [40] Wang LP, Li AM. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res. 2015;68:291-303. DOI: 10.1016/j.watres.2014.10.016.
  • [41] Sun FQ, Xiao KK, Zhu WY, Withanage N, Zhou Y. Enhanced sludge solubilization and dewaterability by synergistic effects of nitrate and freezing. Water Res. 2018;130:208-14. DOI: 10.1016/j.watres.2017.11.066.
  • [42] Deng W, Ma J, Xiao J, Wang L, Su Y. Orthogonal experimental study on hydrothermal treatment of municipal sewage sludge for mechanical dewatering followed by thermal drying. J Clean Prod. 2019;209:236-49. DOI: 10.1016/j.jclepro.2018.10.261.
  • [43] Ramnath L,Gunaratna KR. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles. Bioresour Technol. 2014;153:333-9. DOI: 10.1016/j.biortech.2013.12.003.
  • [44] Ealias AM, Jose JV, Saravanakumar MP. Biosynthesised magnetic iron nanoparticles for sludge dewatering via Fenton process. Environ Sci Pollut Res. 2016;23(21):21416-30. DOI: 10.1007/s11356-016-7351-4.
  • [45] You G, Wang P, Hou J, Wang Ch, Xu Y, Miao L, et al. Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism. Water Res. 2017;118:93-103. DOI: 10.1016/j.watres.2017.04.011.
  • [46] Boyle NJ, Evans GM. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges. Water Sci Technol. 2013;67(9):2117-23. DOI: 10.2166/wst.2013.097.
  • [47] EN 14701-1:2006 - Characterisation of sludges - filtration properties - part 1: capillary suction time (CST). https://webstore.ansi.org/Standards/DIN/DINEN147012006.
  • [48] EN 14701-2:2013 - Characterisation of sludges - filtration properties - part 2: Determination of the specific resistance to filtration. https://webstore.ansi.org/Standards/DIN/DINEN147012013.
  • [49] PN-ISO 6060:2006 - Jakość wody - Oznaczanie chemicznego zapotrzebowania tlenu (Water quality - Determination of chemical oxygen demand). https://sklep.pkn.pl/pn-iso-6060-2006p.html.
  • [50] Zhu Ch, Zhang P, Wang H, Ye J. Conditioning of sewage sludge via combined ultrasonication-flocculation skeleton building to improve sludge dewaterability. Ultrason Sonochem. 2018;40:353-60. DOI: 10.1016/j.ultsonch.2017.07.028.
  • [51] Pillin S, Bhunia P, Yan S, LeBlanc R, Tyagi R, Surampalli R. Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem. 2011;18:1-18. DOI: 10.1016/j.ultsonch.2010.02.014.
  • [52] Hosnani E, Nosrati M, Shojasadati S. Role of extracellular polymeric substances in dewaterability of untreated, sonicated and digested waste activated sludge. J Environ Health Sci Eng. 2010;7:395-400. https://hosnani.com/pdf/hosnani-nosrati-isi-article.pdf.
  • [53] Wang J., Chen C, Gao Q, Li T, Zhu F. Relationship between the characteristics of cationic polyacrylamide and sewage sludge dewatering performance in a full-scale plant. Proc Environ Sci. 2012;16:409-17. DOI: 10.1016/j.proenv.2012.10.057.
  • [54] Lu L, Pan Z, Hao N, Peng W. A novel acrylamide-free flocculant and its application for sludge dewatering. Water Res. 2014;57:304-12. DOI: 10.1016/j.watres.2014.03.047.
  • [55] Huan L, Jin YY, Mahar RB, Wang ZY, Nie YF. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J Hazard Mater. 2009;161(2-3):1421-6. DOI: 10.1016/j.jhazmat.2008.04.113.
  • [56] Zhang G, Wan T. Sludge conditioning by sonication and sonication-chemical methods. Procedia Environ Sci. 2012;16:368-77. DOI: 10.1016/j.proenv.2012.10.053.
  • [57] Bień B. The influence of the way of conditioning on the quality of sludge liquid after the process of mechanical dewatering of sewage sludge. Proc ECOpole. 2017;11(2):471-8. DOI: 10.2429/proc.2017.11(2)051.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84bd0990-c7ae-4359-997e-1d2cec8eb049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.