PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of traffic signal system anomalies for environment tests of autonomous vehicles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the future there will be a lot of changes and development concerning autonomous transport that will affect all participants of transport. There are still difficulties in organizing transport, but with the introduction of autonomous vehicles more challenges can be expected. Recognizing and tracking horizontal and vertical signs can cause a difficulties for drivers and, later, for autonomous systems. Environmental conditions, deformity and quality affect the perception of signals. The correct recognition results in safe travelling for everyone on the roads. Traffic signs are designed for people that is why the recognition process is harder for the machines. However, nowadays some developers try to create a traffic sign that autonomous vehicles can use. Computer identification needs further development, as it is necessary to consider cases where traffic signs are deformed or not properly placed. In the following investigation, the advantages and disadvantages of the different perception methods and their possibilities were gathered. A methodology for the classification of horizontal and vertical traffic signs anomalies that may help in designing better testing and validation environments for traffic sign recognition systems in the future was also proposed.
Rocznik
Tom
Strony
43--47
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Budapest University of Technology and Economics, Hungary, 1111 Budapest Stoczek Street 6
autor
  • Budapest University of Technology and Economics, Hungary, 1111 Budapest Stoczek Street 6
Bibliografia
  • 1. Barria, J.A., Thajchayapong, S., 2011. Detection and classification of traffic anomalies using microscopic traffic variables, IEEE transactions on in-telligent transportation systems, 12(3).
  • 2. Bruno, L., Parla, G., Celauro, C., 2012. Improved traffic signal detection and classification via image processing algorithms, Procedia - social and behavioral sciences, volume 53.
  • 3. Csiszár, Cs., Zarkeshev, A., 2017. Demand-capacity coordination method in autonomous public transportation, Transportation research procedia, 27, 784-790.
  • 4. dpa/muenchen.de, 2016. Signs with geometric figures on black circle (In German Schilder mit geometrischen figuren auf schwarzem kreis).
  • 5. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., Song, D., 2017. Robust physical-world attacks on deep learning models, computer vision and pattern recognition (CVPR 2018), Supersedes arxiv preprint, 1707.08945.
  • 6. Fazekas, Z., Gáspár, P., 2015. Computerized recognition of traffic signs setting out lane arrangements, Acta Polytechnica Hungarica.
  • 7. Gonzalez, H., Riveiro, B., Armesto, J., Arias, P., 2011. Evaluation of road signs using radiometric information from laser scanning data, Research gate.
  • 8. Hechri, A., 2011. Lanes and road signs recognition for driver assistance system, IJCSI international journal of computer science issues, vol. 8, issue 6, no 1.
  • 9. Landaa, J., Prochazkaa, D., 2014. Automatic road inventory using LIDAR, enterprise and the competitive environment, Conference.
  • 10. lasota, M., skoczylas, M. 2016. Recognition of multiple traffic signs using keypoints feature detectors, 2016 International conference and exposition on electrical and power engineering (EPE).
  • 11. Munawar, A., Creusot, C., 2015. Structural inpainting of road patches for anomaly detection, MVA2015 IAPR international conference on machine vision applications.
  • 12. Nyerges, Á., Szalay, Zs., 2017. A new approach for the testing and validation of connected and automated vehicles, 34th International Colloquium on Advanced Manufacturing and Repairing Technologies in Vehicle Industry.
  • 13. Pintér, K., Szalay, Zs., Gábor, Vida, 2017. Autonomous vehicles - novel types and causes of traffic accident, responsibility, 34th international colloquium on advanced manufacturing and repairing technologies in vehicle industry.
  • 14. Potó, V., Somogyi, Á., Lovas, T., Barsi, Á., Tihanyi, V., Szalay, Zs., 2017. Creating hd map for autonomous vehicles - a pilot study, 34th international colloquium on advanced manufacturing and repairing technologies in vehicle industry.
  • 15. Road Technical Specifications e-ut-04-02-11-2012-road signs (t) design, application and placement of signboards.
  • 16. Road Technical Specifications e-ut2-1.113-2001-design of road markings.
  • 17. Simonite, T., 2018. Even artificial neural networks can have exploitable backdoors, last access time: 2018.04.03.
  • 18. Stallkamp, J., Schlipsing, M., Slamen, J., Igel, C., 2016. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition, Neural networks, volume 32, 323-332.
  • 19. Szalay, Zs., Tettamanti, T., Esztergár-Kiss, D., Varga, Is., Bartolini, C., 2017. Development of a test track for driverless cars vehicle design, track configuration, and liability considerations, Periodica Polytechnica Transportation Engineering. vol 46. no 1.
  • 20. Szalay, Zs., Tihanyi, V., 2017. Research and development areas related to zalaegerszeg test track, IFFK 2017: xi. innovation and sustainable surface transport, (In Hungarian zalaegerszegi tesztpályához kapcsolódó kutatás-fejlesztési területek, IFFK 2017: xi. innováció és fenntartható felszíni közlekedés).
  • 21. Url: Https://Www.Wired.Com/Story/Machine-Learning-Backdoors
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b9f1ee-c5ee-4a37-ac59-02fc1703b223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.