PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of forces in a racing simulator based on a Stewart platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents how forces are perceived in a racing simulator based on a Stewart Platform. By retrieving calculated forces in a racing game by its physics engine and comparing them to real-life measurements during the platforms motions it is possible to evaluate the platforms immersiveness. Virtual values extracted from the game engine are deemed satisfactory to their real life counterparts and serve as a baseline. In order to evaluate forces created by the simulator, a lap around a virtual test track is recorded and played back while an accelerometer and gyroscope record its movements. Overall, accelerations recorded in the direction of X and Y axis along with angular speed of rotation around the aforementioned those axis. To accurately comparing every derived force, the recorded virtual lap is divided into sections representing the five most common manoeuvres during racing. These comparisons serve as an evaluation method to measure the immersiveness of the simulator.
Czasopismo
Rocznik
Strony
art. no. 2023405
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • student, Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury, 11 Oczapowskiego St., 10-710 Olsztyn, Poland
  • student, Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury, 11 Oczapowskiego St., 10-710 Olsztyn, Poland
  • Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury, 11 Oczapowskiego St., 10-710 Olsztyn, Poland
  • Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 30 Warszawska St., 10-082 Olsztyn, Poland
Bibliografia
  • 1. Ian Korf. You Suck at Racing: A crash course for the novice driver. CreateSpace Independent Publishing Platform; 2016 May.
  • 2. Kang C-G. Closed-form force sensing of a 6-axis force transducer based on the Stewart platform. Sens Actuators A Phys. 2001 May;90(1-2): 31-7.
  • 3. Zhou S, Sun J, Chen W, Li W, Gao F. Method of designing a six-axis force sensor for stiffness decoupling based on Stewart platform. Measurement. 2019 Dec;148:106966.
  • 4. Chi W, Ma H, Wang C, Zhao T. Research on Control of Stewart Platform Integrating Small Attitude Maneuver and Vibration Isolation for High-Precision Payloads on Spacecraft. Aerospace. 2021 Nov 7;8(11):333.
  • 5. Dasgupta B, Mruthyunjaya TS. The Stewart platform manipulator: a review. Mech Mach Theory. 2000 Jan;35(1):15-40.
  • 6. LFS tire model [Internet]. 2008 [cited 2023 Jul 14]. Available from: https://manolete.files.wordpress.com/2008/07/explicacion-temp-rueda.jpg.
  • 7. Barański R, Galewski M, Nitkiewicz S. The study of Arduino Uno feasibility for DAQ purposes [Internet]. Diagnostyka [Internet]. 2019 May 7;20(2):33-48. Available from: http://www.journalssystem.com/diag/THESTUDY-OF-ARDUINO-UNOFEASIBILITY-FOR-DAQPURPOSES,109174,0,2.html.
  • 8. Zhang Y, Han H, Zhang H, Xu Z, Xiong Y, Han K, et al. Acceleration analysis of 6- RR-RP-RR parallel manipulator with offset hinges by means of a hybrid method. Mech Mach Theory. 2022 Mar;169:104661.
  • 9. Carl Lopez, Danny Sullivan. Going Faster!: Mastering the Art of Race Driving: The Skip Barber Racing School. Bentley Publishers; 2003.
  • 10. Nag A, V S, Bandyopadhyay S. A uniform geometric-algebraic framework for the forward kinematic analysis of 6-6 Stewart platform manipulators of various architectures and other related 6-6 spatial manipulators [Internet]. Mech Mach Theory [Internet]. 2021;155:104090. Available from: https://www.sciencedirect.com/science/artic le/pii/S0094114X20303037.
  • 11. Ding X, Isaksson M. Quantitative analysis of decoupling and spatial isotropy of a generalised rotation-symmetric 6-DOF Stewart platform [Internet]. Mech Mach Theory [Internet]. 2023;180:105156. Available from: https://www.sciencedirect.com/science/article/pii/S0094114X22004013.
  • 12. Graba Mariusz and Bieniek A and PK and HK and MJ and BR and ŚM. Analysis of energy efficiency and dynamics during car acceleration [Internet]. Eksploatacja i Niezawodność - Maintenance and Reliability [Internet]. 2023;25(1). Available from: https://doi.org/10.17531/ein.2023.1.17.
  • 13. Wang M, Hu Y, Sun Y, Ding J, Pu H, Yuan S, et al. An Adjustable Low-Frequency Vibration Isolation Stewart Platform Based On Electromagnetic Negative Stiffness. Int J Mech Sci. 2020 Sep;181:105714.
  • 14. Piovesan D, Ji X. Assessment of Wholebody Vibration via Integrating a Stewart Platform and SimWise Simulation. IFACPapersOnLine. 2022;55(37):388-93.
  • 15. Fu L, Liu Z, Cai C, Tao M, Yang M, Huang H. Joint space-based optimal measurement configuration determination method for Stewart platform kinematics calibration. Measurement. 2023 Apr;211:112646.
  • 16. Adam Brouillard. he Perfect Corner: A Driver’s Step-By-Step Guide to Finding Their Own Optimal Line Through the Physics of Racing: 1. Paradigm Shift Motorsport Books; 2016.
  • 17. Egorov IN, Shevtsov DS. Structure of System Position-Force Control of the Drive Stewart Platform. Procedia Comput Sci. 2017;103:517-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b77ac6-906b-4226-bdf6-7f4287d5d9e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.