PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Myrtle Leaves (Myrtus communis L) and Olive Leaves (Olea europaea): Effect of Drying by Fluidization and Solar Methods on Key Bioactive Compounds Contents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aimed to evaluate the influence of drying by fluidization technology, compared to a traditional solar drying, on phenolic compounds of Moroccan Myrtus communis L. and Olea europaea L. species. Two main parameters of drying by fluidization (air speed (0.3-1 m/s for myrtle leaves and 1-3 m/s for olive leaves) and air temperature (40-60 °C for the two plants leaves)) were modified and controlled. Results showed that high loss values in total polyphenols (TPP) and flavonoids (TF) were observed at (60 °C; 0.3 m/s) for myrtle leaves and at (60 °C; 1 m/s) for olive leaves. However, these compounds were more stable at (40 °C; 1 m/s) for myrtle leaves and at (40 °C; 3 m/s) for olive leaves. Regarding the solar drying method, the results showed that, for myrtle leaves, high losses were observed in the TPP and TF contents, compared to the fluidization method for all processing parameters. For olive leaves, traditional solar drying gives products with phenolic contents similar to those obtained by fluidization drying, especially at (60 °C; 3 m/s). The findings indicated that employing the fluidization drying method might be a suitable approach for enhancing the conservation of bioactive compounds within myrtle and olive leaves.
Twórcy
  • Department of Fisheries Technologies, Higher Institute of Marine Fisheries, Morocco
  • Laboratory of Physical-Chemistry of Processes and Materials, FSTS, Hassan I University, Morocco
  • Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
autor
  • Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
  • Laboratory of Physical-Chemistry of Processes and Materials, FSTS, Hassan I University, Morocco
  • Laboratory of Physical-Chemistry of Processes and Materials, FSTS, Hassan I University, Morocco
Bibliografia
  • 1. Afaneh, I., Yateem, H., Al-Rimawi, F. 2015. Effect of olive leaves drying on the content of oleuropein. American Journal of Analytical Chemistry, 6, 246-252.
  • 2. Aleksic, V., Knezevic, P. 2014. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research, 169(4), 240–254.
  • 3. Alipour, G., Dashti, S., Hosseinzadeh, H. 2014. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytotherapy Research, 28(8), 1125–1136.
  • 4. Basli, A., Chibane, M., Madani, K., Oukil, N. 2012. Antibacterial activity of polyphenols extracts from a medicinal plant flora of Algeria: Origanum glandulosum Desf. Phytothérapie, 10, 2–9.
  • 5. Cavaca, L.A.S., López-Coca, I.M., Silvero, G., Afonso, C.A.M. 2020. The olive-tree leaves as a source of high-added value molecules: Oleuropein. Studies in Natural Products Chemistry, 64, 131–180.
  • 6. Chua, L.Y.W., Chong, C.H., Chua, B.L., Figiel, A. 2019. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A review. Food and Bioprocess Technology, 12, 450–476.
  • 7. Cör Andrejč, D., Butinar, B., Knez, Ž., Tomažič, K., Knez Marevci, M. 2022. The effect of drying methods and extraction techniques on oleuropein content in olive leaves. Plants, 11(7), 865.
  • 8. Dias, R., Oliveira, H., Fernandes, I., Simal-Gandara, J., Perez-Gregorio, R. 2021. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Reviews in Food Science and Nutrition, 61(7), 1130–1151.
  • 9. Jabri, M.-A., Marzouki, L., Sebai, H. 2018. Ethnobotanical, phytochemical and therapeutic effects of Myrtus communis L. berries seeds on gastrointestinal tract diseases: a review. Archives of Physiology and Biochemistry, 124(5), 390–396.
  • 10. Kamran, M., Hamlin, A.S., Scott, C.J., Obied, H.K. 2015. Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Industrial Crops and Products, 78, 29–38.
  • 11. Khemakhem, I., Ahmad-Qasem, M.H., Catalán, E.B., Micol, V., Garc\’\ia-Pérez, J.V., Ayadi, M.A., Bouaziz, M. 2017. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 34, 466–473.
  • 12. Kiritsakis, K., Kontominas, M.G., Kontogiorgis, C., Hadjipavlou-Litina, D., Moustakas, A., Kiritsakis, A. 2010. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. Journal of the American Oil Chemists’ Society, 87, 369–376.
  • 13. Lachowicz, S., Michalska, A., Lech, K., Majerska, J., Oszmiański, J., Figiel, A. 2019. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT, 111, 727–736.
  • 14. Lekrati, M., Jira, F., Zerouk, L., Ibnlfassi, A., & Saad, E. 2017. Fitting of Myrtus communis l. Drying kinetics curves to mathematical models mentioned in the literature. Journal of Science and Arts, 17(2), 303.
  • 15. Liu, W., Li, F., Wang, P., Liu, X., He, J.-J., Xian, M.L., Zhao, L., Qin, W., Gan, R.-Y., & Wu, D.-T. 2020. Effects of drying methods on the physicochemical characteristics and bioactivities of polyphenolicprotein-polysaccharide conjugates from Hovenia dulcis. International Journal of Biological Macromolecules, 148, 1211–1221.
  • 16. Lorini, A., Aranha, B.C., da Fonseca Antunes, B., Otero, D.M., Jacques, A.C., Zambiazi, R.C. 2021. Metabolic profile of olive leaves of different cultivars and collection times. Food Chemistry, 345, 128758.
  • 17. Medina, E., Romero, C., Garcia, P., Brenes, M. 2019. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food \& Function, 10(8), 4716–4724.
  • 18. Noutfia, Y., Benali, A., Alem, C., Zegzouti, Y.F. 2018. Design of a solar dryer for small-farm level use and studying fig quality. Acta Scientiarum Polonorum Technologia Alimentaria, 17(4), 359–365.
  • 19. Noutfia, Y., Benali, A., Guirrou, I., El Fazazi, K., Tantaoui, H. 2021. Effect of two drying methods on key physicochemical properties and sensory profile of dried figs (Ficus carica L). Moroccan Journal of Agricultural Sciences, 2(1).
  • 20. Orphanides, A., Goulas, V., Gekas, V. 2013. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech Journal of Food Sciences, 31(5), 509–513.
  • 21. Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Damyanova, B., Sabatini, A.G., Marcazzan, G.L., Bogdanov, S. 2004. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 15(4), 235–240.
  • 22. Saadati, S., Baninasab, B., Mobli, M., Gholami, M. 2021. Foliar application of potassium to improve the freezing tolerance of olive leaves by increasing some osmolite compounds and antioxidant activity. Scientia Horticulturae, 276, 109765.
  • 23. Sagrin, M.S., Chong, G.H. 2013. Effects of drying temperature on the chemical and physical properties of Musa acuminata Colla (AAA Group) leaves. Industrial Crops and Products, 45, 430–434.
  • 24. Saifullah, M., McCullum, R., McCluskey, A., Vuong, Q. 2019. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12).
  • 25. Selim, S., Albqmi, M., Al-Sanea, M.M., Alnusaire, T.S., Almuhayawi, M.S., AbdElgawad, H., Al Jaouni, S.K., Elkelish, A., Hussein, S., Warrad, M., others. 2022. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Frontiers in Nutrition, 9, 1008349.
  • 26. Sumbul, S., Ahmad, M.A., Asif, M., Akhtar, M. 2011. Myrtus communis Linn.– A review. Indian Journal of Natural Products and Resources, 2(4), 395-402.
  • 27. Tan, S., Ke, Z., Chai, D., Miao, Y., Luo, K., Li, W. 2021. Lycopene, polyphenols and antioxidant activities of three characteristic tomato cultivars subjected to two drying methods. Food Chemistry, 338, 128062.
  • 28. Uribe, E., Marin, D., Vega-Gálvez, A., Quispe-Fuentes, I., Rodriguez, A. 2016. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chemistry, 190, 559–565.
  • 29. Yap, J.Y., Hii, C.L., Ong, S.P., Lim, K.H., Abas, F., Pin, K.Y. 2020. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture, 100(7), 2932–2937.
  • 30. Zecchi, M., Ivantysynova, M. 2011. A novel fluid structure interaction model for the cylinder block/ valve plate interface of axial piston machines. Proceedings of the 52nd National Conference on Fluid Power, Las Vegas, NV, USA, 23–25.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b43523-e6ec-4424-b47a-94a7706d7637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.