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Summary: Recently the authors have developed a time-domain representation of the Currents’ Phy-
sical Components (CPC) power theory. Consequently, piece-wise continuous currents and voltages, 
such as square waves and sawtooth signals, can naturally be taken into account without approxi-
mating them by a finite number of harmonics. Based on the time-domain CPC approach, this paper 
refines and corrects some of the assertions made by Czarnecki in his paper ‘Physical Interpretation 
of the Reactive Power in Terms of CPC Power Theory’.

1. INTRODUCTION

In [1], the author argues that reactive power is not 
necessarily caused by energy oscillation. This assertion is 
motivated using a purely resistive load that is supplied by a 
sinusoidal source voltage and controlled by an ideal TRIAC, 
switched at firing angle a, as depicted in Fig. 1.

Under the assumption that the supply voltage equals

( ) ( )220 2  sin   [V]fu t t= w
                 

a load resistance R=1W, and a firing angle a=135°, the 
current drawn from the source has the waveform depicted in  
Fig. 2. Since the supplied current has a root-mean-square 
(rms) value that is equal to ‌||i(t)‌|| = 66.307 A, the apparent 
power equals S = ||u(t)‌||  ||i(t)‌||  = 14.588 kVA. Furthermore, 
the active power is computed from

( ) ( )
0

1  4.397 kW
T

aP u t i t dt
T

= =∫
                    

where T  =  2p/wf  is the period of the voltage supply. Now, 
since the power factor (PF) is defined as the ratio between 
active and apparent power, we have PF = 0.301. This suggests 
that there must be a non-active power present in the circuit. 
Indeed, the author of [1] proceeds to decompose the supply 
current into a fundamental harmonic

( )1 40.317 2 sin( 60.28 ) Afi t tw= − ° , 

which is subsequently decomposed into an active component, 
i1a(t), that is directly proportional (collinear) with the supply 
voltage and a reactive (quadrature) component i1r(t) as

( ) ( )1 19.987 2 sin  35.014 2 cos( )f fi t t tw w= −

In [1], the reactive current is computed as
 1 ( ) 35.014 2

r
i t = +   

cos(ωf t), which seems to be a typographic error.
In the analysis that follows, the author of [1] states that 

since there is no scattered current component, the supply 
current has only three physical orthogonal components, 
satisfying

||i(t)|| = ||i1a(t)||2 + ||i1r(t)||
2 + ||ih(t)||2

where ih(t) = i(t) – i1(t) represents the load generated harmonic 
current that is due to the TRIAC invoked distortion of the 
supply voltage. Consequently, the associated powers are 
computed as follows:

Pa [kW] Ds [kVA] Qr [kVAr] Dh [kVA] S [kVA]
4.397 0 7.703 11.581 14.588

Here, the reactive and harmonic powers are obtained from

Qr = ||u(t)|| ||i1r(t)||,
        Dh = ||u(t)|| ||ih(t)||

respectively.

2. CONTRIBUTION

The main contribution of the present paper is to show that 
the decomposition outlined above does not coincide with the 
general CPC framework presented in [4]. Moreover, it will 
be shown that there actually is a scattered component in the 
supply current and, consequently, the scattered power Ds ≠ 0. 
Furthermore, the reactive power is shown to possess more 
than one harmonic. These properties come easily into the 
picture when the circuit of Fig. 1 is analysed from a purely 
time-domain perspective of CPC recently proposed by the Fig. 1. Circuit with resistive load and TRIAC
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authors in [3]. For ease of reference, we briefly recall the 
basics of the conventional CPC method first.

3. THE CPC METHOD

The development of the CPC-based power theory dates 
back to 1984 [2], with explanations of power properties in 
single-phase circuits driven by a non-sinusoidal voltage 
source of the form

( ) 0 2 Re fjn t
n n

n N

u t U Y U e w

∈

 
= +  

 
∑

where N  is the set of harmonics present in the signal and wf  
is the fundamental frequency. The basic assumption is that the 
load is linear time-invariant (LTI), which can be characterized 
by a frequency-dependent admittance of the form

Y(ω) = G(ω) + j B(ω)                         (1)

Thus, for each harmonic n ∈ N, the associated admittance can 
be written as Yn = Gn + j Bn. Consequently, the load current 
can be expressed as

( ) 0 0 2 Re fjn t
n n

n N
i t Y U Y U e w

∈

  = +  
  
∑

The main idea then is to decompose the latter into three 
orthogonal components as

i(t) = ia(t) + is(t) + ir(t)                       (2)

The first component is the active current, and can be  
written as

( ) ( ) 0 2 Re fjn t
a e e e n

n N

i t G u t G U G U e w

∈

 
= = +  

 
∑

where Ge denotes the equivalent conductance

( ) ( )
( ) 2

,
|| ||e

u t i t
G

u t
〈 〉

=
                              

(3)

The remaining components can be found by extracting the 
active current from the load current, i.e.,

iF(t) = i(t) – ia(t) =

( ) ( )

( ) ( )

0 0

0 0

2 Re

2 Re  

f

f
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and decomposing the latter into

( ) ( ) ( )

( )

0 0: 2 Re ,

: 2 Re  ,

f

f
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∑
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referred to as the scattered and reactive current, respectively. 
Although these current components are in itself not 

physical quantities, they can be associated to three distinctive 
physical phenomena in the load:
1) 	 Permanent energy conversion—active current ia(t);
2) 	 Change of load conductance Gn with harmonic 

order—scattered current is(t);
3) 	 Phase-shift between the voltage and current 

harmonics—reactive current ir(t).
For more details and a proof of orthogonality, the 

interested reader is referred to [4]. Note that the CPC 

Fig. 2. Voltage and current waveforms for the TRIAC circuit
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method uses techniques from both the time-domain and 
the frequency domain, and can therefore be considered as a 
hybrid approach.

4. CPC IN THE TIME-DOMAIN

Consider a single-input single-output (SISO) linear time-
invariant (LTI) system of the form

dx (t) / dt = A x(t) + B u(t) 
 

y(t) = C x(t) + D u(t)   

where x(t) denotes the state of the system, and the input u(t) 
and the output y(t) form a so-called power conjugated input-
output pair, i.e., their product equals (instantaneous) power. 
If the input represents a voltage, then the output necessarily 
represent a current, and vice-versa. The matrices A, B, 
C, and D are constant matrices of appropriate dimensions 
reflecting the network structure of the circuit. Under the 
assumption that the system is stable, and some integrable 
(periodic) input u(t) for t ≥ 0, the (stationary or steady-state) 
solution of the system (4) is given by

( ) ( ) ( )*   y t h s u t s ds
∞

−∞

= −∫
                  

(5)

where the function h(t) ≔ CeAt B +D δ(t) is assumed to be 
causal, i.e., h(t) = 0 for t <  0. Here δ(t) represents the Dirac 
delta function and h(t) is called the impulse response. As 
any (real or complex) function can be written as a unique 
sum of even and odd functions, we decompose the impulse 
response into

( ) ( ) ( ):
2e

h t h t
h t

+ −
=

( ) ( ) ( )
0 :

2
h t h t

h t
− −

=
                         

(6)

satisfying h(t) = he(t) + ho(t).

A. Hybrid Versus Time-Domain CPC

The rationale behind the even-odd decomposition (6) is 
that, under the condition that h(t) is real and causal (a property 
that is generally satisfied in physical systems), the even and 
odd parts, he(t) and ho(t), uniquely correspond to their real 
and imaginary counterparts parts in the complex frequency-
domain, respectively. This one-to-one correspondence 
between the time-domain and the frequency-domain is 
known as the Kramers-Kronig relationship [6], [7]. Hence, 
if u(t) represents the source voltage and y(t) represents 
the corresponding source current, the even and odd part 
of the impulse response uniquely corresponds to the real 
and imaginary parts of the complex load admittance (1), 
respectively, i.e.,

	 he(t) ↔ G(ω),      ho(t) ↔ B(ω). 

A pictorial representation of the Kramers-Kronig relations 
is shown in Fig. 3, whereas an elementary proof can be 
found in [8].

B. Active, Scattered, and Reactive Power

Based on (6), the stationary response of the output can 
be decomposed into

( ) ( ) ( )

( ) ( )

*
||

0

0

:

( ) ( )
 ,

2 2

ey t h s u t s ds

h s u t s h s u t s
ds ds

∞

−∞

∞

−∞

= − =

− − −
= +

∫

∫ ∫
         

(7)

and

 

( ) ( ) ( )

( ) ( )

*

0

0

:

( ) ( )
 .

2 2

oy t h s u t s ds

h s u t s h s u t s
ds ds

∞

⊥
−∞

∞

−∞

= − =

− − −
= −

∫

∫ ∫
      

(8)

In relation to the input, ( )*
|| ty corresponds to the in-phase 

part, whereas the out-of-phase part is represented by ( )* ty⊥ .
Based on this decomposition, we can now compute the 

active, reactive, and scattered components of the stationary 

Fig. 3. The Kramers-Kronig relationship
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output. The active and scattered components are contained 
in ( )*

|| ty  and can be extracted as

( ) ( ) ( )
( ) ( )

*
||*

2

,
|| ||a

y t u t
y t u t

u t
〈 〉

=
                   

(9)

and

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
||* * * *

|| ||2

,
|| ||s a

y t u t
y t y t u t y t y t

u t
〈 〉

= − = −
    

(10)

respectively, whereas the reactive component is given by

( ) ( )* *
 ry t y t⊥=                                 (11)

The corresponding powers are then found as

( ) ( )

( )

* *

*

|| || ( ) || || || ( ) ||: || : ||

: ||

,

|| || ( ) ||

ra a r

s s

P u t y t Q u t y t

D u t y t

= =

=

→

whereas for the apparent power we have

( ) ( )*: || || || ||S u t y t=

5. THE TRIAC CIRCUIT REVISITED

Although the approach outlined in Section 4 is (so far) 
established for linear time-invariant (LTI) systems, the 
extension to static time-dependent circuits, like the TRIAC 
circuit of Fig. 1, can naturally be taking into consideration 
as follows. Since there are no inductors and capacitors in the 
circuit, the matrices A, B and C  are all void. Hence, the 
system (4) reduces to a static time-dependent input-output 
system of the form

y(t) = D(t) u(t)                             (12)

For the TRIAC circuit of Fig. 1, the input u(t) and the 
output y(t) = i(t)  represent the supply voltage and current, 
respectively, whereas the direct feed-through term D(t) 
represents the load in the form of a time-varying linear 
conductor

( )
0,   , ,   0,1,2 ,

2 2
1,  otherwise

kT kTif t k
D t

  ∈ +a = … =  

     

(13)

As the circuit does not exhibit any dynamics, it is sufficient 
to consider only the first period: k = 0, 1.

In order to apply a similar decomposition as in (6), the load 
characteristic over one period is split into a positive sequence

( ) )0,   0,  and ,

1, other
2

wise
2

T Tif t t
D t

a a+

  ∈ ∈ + =  



and a corresponding negative sequence

( )
0,  ,0   ,

2 2
1,

T Tif t and t T
D t

otherwise

−

   ∈ a − ∈ a − −   =    



Consequently, the in-phase and out-of-phase components 
of the supply current are computed as

	

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

|| 2

2

t t
i t u t

t t
i t u t

+ −

−

⊥

+

+
=

−
=

D D

D D

                 

(14)

which clearly satisfies i(t) = i||(t) + i⊥(t). The in-phase 
components can be further decomposed using (9) and (10) 
into an active current ia(t) and a scattered current is(t), 
respectively. According to (11), the reactive current ir(t) is 
represented by the out-of-phase components. Based on this 
current decomposition, we now compute:

Pa [kW] Ds [kVA] Qr [kVAr] Dh [kVA] S [kVA]
4.397 9.331 10.315 0 14.588

The waveforms of the active, scattered, and reactive 
currents are shown in Fig. 4.

6. CZARNECKI’S APPROACH REVISITED

We observe that, according to the time-domain CPC 
approach outlined in the previous section, the TRIAC circuit 
actually does exhibit scattered power. This in contrast to the 
assertions and derivations in [1]. Let us next, to verify our 
results, consider the situation from the conventional CPC 
perspective outlined in Section 3.

From the exposition in Section 3, we readily observe that 
the scattered power is due to the fact that the load conductance 
may change with harmonic order. This occurs when the load 
is frequency-dependent. Considering the TRIAC circuit, 
the load is characterized by (13), which produces a periodic 
sequence of pulse wave signals. From a frequency-domain 
perspective, these pulses have an infinite amount of harmonic 
content, and can therefore be written as a Fourier series as 
follows:

( )
0

1 f

T
jn t

n t e dt
T

w−= ∫D D

Since Dn is complex-valued, we can decompose it into

Dn  := Gn + j Bn

where

( ) ( )3 7sin sin sin sin 2
4 4

2n

n nn n
G

n

p p   − + p − + p   
   =

p

D

D

D

1

0   otherwise

and
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( )3 7cos cos cos cos(2 )
4 4

2n

n nn n
B

n

p pp p

p

   − + − +   
   =

represent the real and imaginary parts of the load conductance 
and thus clearly change with harmonic order!

Proceeding along the lines of Section 3, the supply current 
can be expressed as

( ) ( ) ( )Re  fjn t
n n

n

i t G j B e u tw
∞

=−∞

 
= + 

 
∑

which, in a similar fashion as (2), can be decomposed into

ia(t) = Geu(t),

( ) ( )Re ( ),fjn t
s n e

n

i t G e u t G u tw
∞

=−∞

 
= − 

 
∑

( ) ( )Re  ,fjn t
r n

n

i t j B e u t
∞

w

=−∞

 
=  

 
∑

where Ge represents the equivalent conductance (3). 
However, a drawback of the hybrid CPC approach is that in 
order to produce the respective powers, the results must be 
approximated using a finite number of harmonics, whereas 
the time-domain CPC method is able to produce these powers 
analytically. Indeed, taking 500 harmonics into account, we 
obtain:

Pa [kW] Ds [kVA] Qr [kVAr] Dh [kVA] S [kVA]
4.397 9.299 10.286 0 14.547

Fig. 4. Voltage and current CPC waveforms for  the TRIAC circuit obtained in the time-domain

These values are close, but not exactly equal to the results 
obtained earlier. Needless to say that increasing the number of 
harmonics gradually improves the results, but at the expense 
of computational effort.

7. CONCLUSIONS

The results presented in [1] are critically reviewed. It is 
shown that the powers in a TRIAC controlled resistor circuit 
driven by a sinusoidal supply voltage should be decomposed 
into an active, reactive, and scattered component. This was 
motivated from both a pure CPC time-domain perspective 
[3] as well as the conventional hybrid CPC method [2], [4]. 
Harmonic power Dh should be reserved for those situations 
in which the load actively generates harmonic power through, 
for example, a harmonic generating current source. 
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