Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Hopkinson pressure bar has been developed to calibrate and assess high g accelerometers’ capacity. The extreme caution is indispensable for performing calibration of severe characteristics, like the bearable super-high overload peak and wide duration of stress. In the paper, the Hopkinson bar calibrating system is being critically appraised. A limiting formula is deduced based on the stress wave theory. It indicates that the overload peak and duration of stress are limited by the elastic limit and wave speed of Hopkinson bar material. Both stress wave configurations in the form of linear ramp and cosine functions were designed theoretically to meet typical calibrating requirements. They were confirmed experimentally with the aid of the pulse shaping technique. Their corresponding calibration characteristics were analysed critically, and it was found that the cosine stress wave can achieve the values of acceleration peak or duration by π/2 times greater than those obtained with the linear stress wave. Finally, some suggestions are proposed for more extreme calibration requirements.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
335--343
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Xi’an Jiaotong University, School of Aerospace Engineering, Department of Engineering Mechanics, Xi’an,Shaanxi 710049, China
- Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering, Xi’an, Shaanxi 710049, China
Bibliografia
- [1] British Standards. (1993). Revision of ISO: Method for the calibration of vibration and shock pick-ups, Part 1, primary vibration calibration by laser interferometry, 5347-5348.
- [2] Sill, R.D. (1983). Testing techniques involved with the development of high shock acceleration sensors. Endevco Tech Paper, TP284. San Juan Capistrano, CA92675.
- [3] Ueda, K., Umeda, A. (1995). Characterization of shock accelerometers using Davies bar and laser interferometer. Exp. Mech., 35, 216-223.
- [4] Togami, T.C., Baker, W., Forrestal, M. (1996). A split Hopkinson bar technique to evaluate the performance of accelerometers. J. Appl. Mech., 63, 353-356.
- [5] Togami, T.C., Bateman, V.I., Brown F.A. (1997). Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration. Accel., 12, 1-11.
- [6] Li, Y.L., Guo, W.G. Jia, D.X., Xu, F. (1997). An equipment for calibrating high shock acceleration sensors. Explo. Shock Waves, 17, 90-96.
- [7] Usuda, T., Furuta, E., Ohta, A. (2002). Development of laser interferometer for a sine-approximation method. Proc. Spie., 4827, 29-36.
- [8] Bateman, V., Thacker, P. (2002). Certification of 200,000 g Shock Calibration Technique for Sensors. Journal of the Iest, 45, 121-128.
- [9] Forrestal, M.J., Togami, T.C., Baker, W.E., Frew, D.J. (2003). Performance evaluation of accelerometers used for penetration experiments. Exp. Mech., 43, 90-96.
- [10] Bao, H., Song, Z., Lu, D.,et al. (2009). A simple estimation of transverse response of high-g, accelerometers by a free-drop-bar method. Micro. Reli., 49, 66-73.
- [11] Nozato, H., Usuda, T., Oota, A. (2010). Calibration of vibration pick-ups with laser interferometry: part IV. Development of a shock acceleration exciter and calibration system. Meas. Sci. Tech., 21, 65107-65116.
- [12] Lu, Y., Cheng, Y., Sun, Y., (2013). Performance evaluation of high g accelerometers. J. Mech. Sci. Tech., 27, 3357-3362.
- [13] Tsutsui, W., Raghunathan, N., Chen, W., Peroulis, D. (2014). Testing Techniques for Shock Accelerometers below 10,000 g. Dynamic Behavior of Materials. 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham, 333-340.
- [14] Hopkinson, B. (1914). A method of measuring the pressure in the deformation of high explosives or by the impact of bullets. Phil. Trans. R. Soc. London A, 213, 437-452.
- [15] Frew, D.J., Forrestal, M.J., Chen, W. (2009). A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer. Proceedings of the 2009 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Albuquerque, NM, Jun. 1-4.
- [16] Chen, W., Song, B. (2010). Split Hopkinson (Kolsky) Bar Design, Testing and Applications. New York, Springer.
- [17] Miao, Y.G., Li Y.L., Liu H.Y., et al.(2016). Determination of Dynamic Elastic Modulus of Polymeric Materials Using Vertical Split Hopkinson Pressure Bar. Int. J. Mech. Sci., 108-109, 188-196.
- [18] Miao, Y.G. (2018). On loading ceramic-like materials using split Hopkinson pressure bar. Acta Mech., 229, 3437-3452.
- [19] Baranowski, P., Gieleta, R., Malachowski, J., Damaziak, K., Mazurkiewicz, L. (2014). Split Hopkinson pressure bar impulse experimental measurement with numerical validation. Metrol. Meas. Syst., 21(4), 47-58.
- [20] Panowicz, R., Janiszewski, J. (2016). Tensile split Hopkinson bar technique: numerical analysis of the problem of wave disturbance and specimen geometry selection. Metrol. Meas. Syst., 23(4), 425-436.
- [21] Ravichandran, G., Subhash. G. (1994). Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson Pressure bar. J. Ame. Cera. Soc., 77, 263-267.
- [22] Wang, L.L. (2007). Foundation of stress waves. Elsevier Science, Amsterdam, Netherlands, 66-68.
- [23] Hazarika, M., (2017). Sandia Labs demonstrates new method to test rocket part. http://www.aerospace-technology.com/news/newssandia-labs-demonstrates-new-method-to-test-rocket-part 5915434/.
- [24] Pochhammer, L. (1876). On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder. J. fur die Reine und Angewandte Mathematik, 81, 324-326.
- [25] Chree, C. (1889). The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications. Trans. Cambridge Phil. Soc., 14, 250-369.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b20b88-ce3c-40a8-b3da-a9cf338add19