Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Compensating a limb loss with prosthesis is a challenging task due to complexity of the human body which cannot be fully matched by the available technical means. Designer of lower limb prostheses wants to know what specification of the device could provide the best approximation to the normal locomotion. Deep understanding of the latter is essential, and gait analysis may be a valuable tool for this. Once prosthesis is built, gait analysis may help in comparing the wearer’s performance with the new device and with the prior art, and in verification of the hypotheses being put forward during the development process. In this lecture, we will discuss some synergies of normal gait. We will focus on the required biomechanical properties of a prosthetic leg that can allow the prosthesis’s inclusion in normal gait synergy without demanding excessive compensatory movements. We will consider contribution of leg joints to generation of propulsion for adequate design of lower limb prostheses especially those with power supply.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--10
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Tufts University School of Medicine, Boston, MA 02111
Bibliografia
- [1] PITKIN M., Mechanical outcome of a rolling joint prosthetic foot, and its performance in dorsiflexion phase of the transtibial amputee gait, Journal of Prosthetics and Orthotics, 1995, 7(4), 114–123.
- [2] PITKIN M.R., Synthesis of a cycloidal mechanism of the prosthetic ankle, Prosthet. Orthot. Int., 1996, 20(3), 159–171.
- [3] PITKIN M.R., Biomechanics of lower limb prosthetics, Springer, Heidelberg, Dordrecht, London, New York, 2010.
- [4] BORELLI G.A., De Motu Animalium ... Opum Posthumum, Romae, ex Typographia Angeli Bernabo, 1680–1681. Tomo I, tav. IV.
- [5] ELFTMAN H., Forces and energy changes in the leg during walking, Am. J. Physiol., 1939, 125(2), 339–356.
- [6] SUTHERLAND D.H., An electromyographic study of the plantar flexors of the ankle in normal walking on the level, J. Bone Joint Surg. Am., 1966, 48(1), 66–71.
- [7] WINTER D.A., Biomechanics of Human Movement, John Willey & Sons, Inc., New York, 1979.
- [8] HOF A.L., GEELEN B.A., VAN DEN BERG J., Calf muscle moment, work and efficiency in level walking; role of series elasticity, J. Biomech., 1983, 16(7), 523–537.
- [9] PERRY J., Gait Analysis: normal and pathological function, Thorofare, Slack, Inc., NJ, 1992.
- [10] KEPPLE T.M., SIEGEL K.L., HOLDENA J.P., STANHOPE S.J., Relative contributions of the lower extremity joint moments to forward progression and support during gait, Gait & Posture, 1997, 6(1), 1–8.
- [11] SAUNDERS J.B., INMAN V.T., EBERHART H.D., The major determinants in normal and pathological gait, J. Bone Joint Surg. Am., 1953, 35-A(3), 543–558.
- [12] BREAKEY J., Gait of unilateral below-knee amputees, Orth. Prosth., 1976, 30(4), 17–24.
- [13] CZERNIECKI J.M., Rehabilitation in limb deficiency. 1. Gait and motion analysis, Arch. Phys. Med. Rehabil., 1996, 77 (3 Suppl.), S3–8.
- [14] KIRTLEY C., Clinical gait analysis: theory and practice, Elsevier, Edinburgh, New York, 2005.
- [15] DILLINGHAM T.R., LEHMANN J.F., PRICE R., Effect of lower limb on body propulsion, Arch. Phys. Med. Rehabil., 1992, 73(7), 647–651.
- [16] MEINDERS M., GITTER A., CZERNIECKI J.M., The role of ankle plantar flexor muscle work during walking, Scand. J. Rehabil. Med., 1998, 30(1), 39–46.
- [17] PITKIN M., Regular and intentional generation of propulsion in normal gait as prototype for prosthetic design, IEEE Eurocon 2009 International Conference, St. Petersburg, Russia, May 18–23, 2009.
- [18] MCCRONVILLE J., CHURCHILL T., KALEPS I., CLAUSER C., CUZZI J., Anthropometric relationships of body and body segments moments of inertia, [in:] Anthropology Research Project, Inc., Yellow Springs, OH, 1980.
- [19] PITKIN M., Kinematic and Dynamic Analysis of Human Gait (Rus), [in:] Proceedings of the First All-Union Conference in Biomechanics, RNIITO, Riga, Latvia, 1975, 279–283.
- [20] RILEY P.O., DELLA CROCE U., KERRIGAN D.C., Propulsive adaptation to changing gait speed, J. Biomech., 2001, 34(2), 197–202. 10 M. PITKIN
- [21] PITKIN M., Mechanics of the Mobility of the Human Foot, Mechanica Tverdogo Tela, Izvestia of the Academy of Sciences of the USSR, Moscow, 1975, 10(6), 40–45.
- [22] PITKIN M., Artificial Foot and Ankle, US Patent No. 5376139, 1994.
- [23] PITKIN M., HAYS J., SRINIVASAN S., COLVIN J., Artificial foot and ankle, US Patent 6290730, 2001.
- [24] PITKIN M., Lowering the forces and pressures on amputee stump with Rolling Joint Foot, Biomechanics, 1999, 315– 318.
- [25] PITKIN M., SHCHERBINA K., SMIRNOVA L., SUSLYAEV V., ZVONAREVA E., KURDIBAYLO S., Amputee Hockey: Biomechanical Evaluations, Problems and Paralympic Outlook, Orthopaedie-Technik, 2006, 1, 1–6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b1606d-131d-4b78-8e23-3fc5878455c2