PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strong Cesáro summability of triple Fourier integrals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The theory of summability is a very extensive field, which has various applications. We prove the following theorem. Assume ƒ ϵ L∞(R3) with bounded support. If ƒ is continuous at some point (x1, x2, X3) ϵ R3, then the triple Fourier integral of ƒ is strongly q-Casáro summable at (x1, x2, X3) to the function value ƒ (x1, x2, X3) for every 0 < q < ∞. Furthermore, if ƒ is continuous on some open subset G of R3, then the strong q-Cesáro summability of the triple Fourier integral of ƒ is locally uniform on G.
Rocznik
Tom
Strony
95--112
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Department of Applied Mathematics and Humanities Sardar Vallabhbhai National Institute of Technology Ichchhanath Mahadev Dumas Road Surat-395 007 (Gujarat), India
autor
  • Department of Applied Mathematics and Humanities Sardar Vallabhbhai National Institute of Technology Ichchhanath Mahadev Dumas Road Surat-395 007 (Gujarat), India
autor
  • Department of Mathematics National Institute of Technology Silchar - 788 010, District - Cachar (Assam), India
  • L. 1627 Awadh Puri Colony Beniganj Phase - III, Opposite - Industrial Training Institute (I.T.I.) Ayodhya Main Road Faizabad - 224 001 (Uttar Pradesh), India
Bibliografia
  • [1] Auscher P., Carro M.J., On relations between operators on RN, TN, and ZN, Studia Maths., 101(9192), 166-182.
  • [2] Brown G., Feng D., Moricz F., Strong Cesáro summability of double Fourier integral, Acta Math. Hungar., 115(1-2)(2007), 1-12.
  • [3] Hardy G.H., Divergent Series, Oxford University Press, London, 1949.
  • [4] Khan H.H., On degree of approximation to a functions belonging to the class Lip(a,p), Indian Journal of Pure and Applied Mathematics, 5(1974), 132-136.
  • [5] Moricz F., Strong Cesáro summability and statistical limit of Fourier integrals, Analysis, 25(2005), 79-86.
  • [6] Mishra V.N., Khatri K., Mishra L.N., Product summability transform of conjugate series of Fourier series, International Journal of Mathematics and Mathematical Sciences Article, ID 298923 (2012), 13 pages, DOI: 10.1155/2012/298923.
  • [7] Mishra V.N., Khatri K., Mishra L.N., Product (N,pn)(C, 1) summability of a sequence of Fourier coefficients, Mathematical Sciences (Springer open access), 6(38)(2012), DOI: 10.1186/2251 7456-6-38.
  • [8] Mishra V.N., Khatri K., Mishra L.N., Using Linear Operators to Ap-proximate Signals of Lip(a,p), p > 1 -Class, Filomat, 27(2)(2013), 355-365.
  • [9] Mishra V.N., Khatri K., Mishra L.N., Approximation of functions be-longing to class by summability of conjugate series of Fourier series, accepted Journal of Inequalities and Applications- a Springer Open Access Journal, 2012, 2012:296. DOI: 10.1186/1029-242X-2012-296.
  • [10] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New Jersey, 1971.
  • [11] Zygmund a., Trigonometric Series, Cambridge University Press, UK, 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84b12cc9-ebe6-4ef0-a758-adf0377fd3a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.