PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Energy Potential of Plastics as a Component of ANFO-type Explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many methods have been developed to reduce the environmental impact of plastic waste. New technologies have been developed to make high-temperature utilisation of these wastes possible. A promising method for the unconventional disposal of plastics by detonation was identified. The popular explosive ANFO (Ammonium Nitrate Fuel Oil) is a component mixture of oxidiser (ammonium nitrate) and fuel (diesel fuel). The optimal composition is 94.5% oxidiser and 5.5% fuel – a guarantee of complete and total combustion. Plastics have a chemical composition and oxygen balance similar to fuel oil. It is possible to replace the fuel share in ANFO by adding plastics and using the energy they contain. The amount of energy that can be recovered is high for PE and PP (at the level of 0.6) and PS – 0.5. Using polymers as ANFO components is advantageous for economic reasons – plastic waste will be eliminated during blasting works.
Słowa kluczowe
Rocznik
Tom
Strony
413--423
Opis fizyczny
Bibliogr. 112 poz., rys., tab.
Twórcy
  • Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Krakow, Poland
Bibliografia
  • Ahamed, A., Veksha A., Yin K., Weerachanchai P., Giannis A., Lisak G. (2020). Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. Journal of Hazardous Materials, 390, 121449. https://dx.doi.org/10.1016/j.jhazmat.2019.121449
  • Aisien, E.T., Otuya, I.C., Aisien, F.A. (2021). Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst. Environmental Technology & Innovation, 22, 101455. https://doi.org/10.1016/j.eti.2021.101455
  • Al Hosni, A.S.K., Pittman, J., Robson, G. (2019). Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97, 105-114. https://doi.org/10.1016/j.wasman.2019.07.042
  • Al-Salem, S.M., Lettieri, P., Baeyens, J. (2010). The valorisation of plastic solid waste (PSW) by primary to quaternary routes: From reuse to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103-129. https://doi.org/10.1016/j.pecs.2009.09.001
  • Amsaveni, D., Ghayathri, D.K., Venkatesan, S. (2020). Optimising the usage of plastic waste in cement industry using discrete dynamic programming. Materials Today: Proceedings, 21, 257-262. https://doi.org/10.1016/j.matpr.2019.05.424
  • Babrauskas, V. (1992). Heat of Combustion and Potential Heat. In: Heat Release in Fires. Babrauskas, V., Grayson S.J. (Eds.). Elsevier Applied Science, London. https://www.researchgate.net/publication/246363103_Heat_Release_in_Fires, 207-223.
  • Baidya, R., Ghosh, S.K., Parlikar, U.V. (2016). Co-processing of industrial waste in cement kiln – a robust system for material and energy recovery. Procedia Environmental Sciences, 31, 309-317. https://doi.org/10.1016/j.proenv.2016.02.041
  • Bandopadhyay S., Martin-Closas L., Pelacho A.M., DeBruyn J.M. (2018). Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology, 9, 819. https://doi.org/10.3389/fmicb.2018.00819
  • Bhawan, P., Nagar, E.A. (2016). Central Pollution Control Board (Ministry of Environment & Forests & Climate Change). Study on Plastic Waste Disposal through "Plasma Pyrolysis Technology". Delhi-110032.
  • Biegańska, J., Barański, K. (2017). Effect of plastic waste additives on the energetic parameters of ANFO explosives. High Energy Materials, 9, 145-158. https://doi.org/10.22211/matwys/0153
  • Biegańska, J., Barański, K. (2018). Effect of plastic waste additives on the energetic parameters of ANFO explosives. Tworzywa Sztuczne w Przemyśle, 4, 48-54.
  • Biegańska, J., Barański, K., Tumen-Ulzii, G. (2018a). Influence of the addition of plastics on the content of post-detonation gaseous products of ANFO explosive. High Energy Materials, 10, 5-12. https://doi.org/10.22211/matwys/0164
  • Biegańska, J., Barański, K., Tumen-Ulzii, G. (2018b). Influence of the addition of plastics on the content of gaseous products generated after detonation of ANFO explosive. IPOEX 2018: 15th international conference: explosives - research - application - safety. Ustroń Zawodzie 11-13 czerwca 2018 r.
  • Biegańska, J., Barański, K., Hebda, K., Pytlik, M. (2022). Thermodynamic assessment of the impact of selected plastics on the energy parameters of explosives. Energies, 15, 9583. https://doi.org/10.3390/en15249583
  • Biegańska, J., Olek, J., Brodowiak, J. (2004). Possibility of use of plastic waste as an energy source. Termiczne unieszkodliwianie odpadów. Procesy termiczne w gospodarce odpadami w regionach przyrodniczo-cennych. 251-266. Praca zbiorowa. Pod red. Janusza W. Wandrasza. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych. Oddział Wielkopolski, Poznań. (in Polish)
  • Biegańska, J., Olek, J., Matyszkiewicz, B. (2005). The application of waste plastics as a modifier of emulsion properties of explosives. Paliwa z odpadów. T. 5. Praca zbiorowa pod red. Janusza W. Wandrasza, Krzysztofa Pikonia. Helion, Gliwice, 227-232. (in Polish)
  • Biessikirski, A., Czerwonka, D., Biegańska, J., Kuterasiński, Ł., Ziąbka, M., Dworzak, M., Twardosz, M. (2021). Research on the possible application of polyolefin waste-derived pyrolysis oils for ANFO manufacturing. Energies, 14, 172. https://doi.org/10.3390/en14010172
  • Bilewicz, M., Labisz, K., Tański, T., Konieczny, J., Górniak, M. (2014). Structural identification of polymer nanocomposites. Acta Physica Polonica A, 126(4), 895-901. https://doi.org/10.12693/APhysPolA.126.895
  • Briassoulis, D., Hiskakis, M., Babou, E. (2013). Technical specifications for mechanical recycling of agricultural plastic waste. Waste Management, 33(6), 1516-1530. https://doi.org/10.1016/j.wasman.2013.03.004
  • Bujak, J.W. (2015), Thermal utilisation (treatment) of plastic waste. Energy, 90(2), 1468-1477. https://doi.org/10.1016/j.energy.2015.06.106
  • Cement: A plastic positive industry. (2021). Cement Manufacturers' Association. December 30, 2021. https://www.cmaindia.org/cement-plastic-positive-industry
  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511. https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.9b06635
  • Chaurasia, M. (2020). Analytical review on biodegradation of plastics. eLifePress, 1(1), 1-8. https://elifepress.com
  • Chen R., Li Q., Xu X., Zhang D. (2019). Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel, 246(1), 212-221. https://doi.org/10.1016/j.fuel.2019.02.129
  • Chiellini, E. & Solaro R. (2003). Biodegradable polymers and plastics. New York: Springer Science+Business Media. https://link.springer.com/content/pdf/10.1007/978-1-4419-9240-6.pdf
  • Cole, C., Osmani, M., Quddus, M., Wheatley, A., Kay, K. (2014). Towards a Zero Waste Strategy for an English Local Authority. Resources Conservation and Recycling, 89, 64-75. https://doi.org/10.1016/j.resconrec.2014.05.005
  • Compendium of Technologies for Plastic Waste Recycling and Processing. (2021). IGES Centre Collaborating with UNEP on Environmental Technologies (CCET) and ICLEI – Local Governments for Sustainability. https://southasia.iclei.org/wp-content/uploads/2022/05/Technology_Compendium_Designed_Final.pdf
  • Courtemanche, B., Levendis, Y.A. (1998). A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverised coal, municipal waste plastics and tires. Fuel, 77(3), 183-196. https://doi.org/10.1016/S0016-2361(97)00191-9
  • Dailin, D.J., Rithwan, F., Hisham, A.M., Rasid, Z.I.A., Azelee, N.I.W., Sapawe, N., Chuah, L.F., Yusof, A.H.M., Enshasy, H.E. (2022). A Review on current status of plastic waste biodegradation using microbial approach. Bioscience Research, 19(3), 1599-1606. https://www.researchgate.net/publication/363263600
  • Engelbeen, F. (2022). Plastics – Environmental aspects. Indian Institute of Science Centre for Ecological Sciences. http://ces.iisc.ernet.in/hpg/envis/plasdoc612.html
  • Eriksson O., Finnveden G. (2009). Plastic waste as a fuel-CO2-neutral or not? Energy & Environmental Science, 2(9), 907-914. https://doi.org/10.1039/b908135f
  • EU. (2008). Revised Waste Framework Directive, 2008/98/EC. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32008L0098
  • Eze, W.U., Umunakwe, R., Obasi, H.Ch., Ugbaja, M.I., Uche, C.Ch., Madufor, I.Ch. (2021). Plastics waste management: A review of pyrolysis technology. Clean Technologies and Recycling, 1(1), 50-69. https://doi.org/10.3934/ctr.2021003
  • FAL. (2011). Cradle-to-gate life cycle inventory of nine plastic resins and two polyurethane precursors. Revised Final Report. Prepared for the Plastics Division of The American Chemistry Council Prairie Village, KS: Franklin Associates, Ltd. Available at: http://plastics.americanchemistry.com/LifeCycle-Inventory-of-9-Plastics-Resins-and-4-Polyurethane-Precursors-Rpt-Only
  • Fei, F., Wen, Z., Huang, S., De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: energy efficiency, environmental impact and economic feasibility analysis. Journal of Cleaner Production, 178, 731-739. https://doi.org/10.1016/j/jclepro.2018.01.060
  • Gao, F. (2002). Handbook of plastics recycling. F La Mantina (ed). Rapra Technology, Shrewsbury UK. https://doi.org/10.1002/pi.1323
  • Garcia, J.M., Robertson, M.L. (2017). The future of plastics recycling. Science, 358(6365), 870-872. https://doi.org/10.1126/science.aaq0324
  • Garforth, A.A., Ali, S., Hernández-Martínez, J., Akah, A. (2004). Feedstock recycling of polymer wastes. Current Opinion in Solid State and Materials Science, 8(6), 419-425. https://doi.org/10.1016/j.cossms.2005.04.003m
  • Gervet, B. & Nordell, B. (2007). The use of crude oil in plastic ma king contributes to global warming. Renewable Energy Research Group Division of Architecture and Infrastructure Luleå University of Technology SE-97187 Luleå, Sweden. https://www.researchgate.net/publication/266469821
  • Geyer, R., Jambeck, J.R., Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 1-5. https://doi.org/10.1126/sciadv.1700782
  • Gharde S., Kandasubramanian B. (2019). Mechanothermal and chemical recycling methodologies for the fibre reinforced plastic (FRP). Environmental Technology & Innovation, 14, 100311. https://doi.org/10.1016/j.eti.2019.01.005
  • Ghosh D.S., Ansari S.A. (2019). An investigation on process optimisation in cement industries through Co-processing of plastic waste. International Journal of Modern Engineering & Management Research, 7(4), 5-13. http://www.ijmemr.org/Publication/V7I4/IJMEMR-V7I4-001.pdf
  • Global ANFO Grade Ammonium Nitrate Market Research Report 2023.
  • https://reports.valuates.com/market-reports/QYRE-Auto-21K8031/global-anfo-grade-ammonium-nitrate
  • Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Matererials, 344, 179-199. https://doi.org/10.1016/j.jhazmat.2017.10.014.
  • Huang, J., He, C., Li, X., Pan, G., Tong, H. (2018). Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol a polycarbonate. Waste Management, 71, 181-191. https://doi.org/10.1016/j.wasman.2017.10.016
  • Idumah, C.I. (2022). Recent advancements in thermolysis of plastic solid wastes to liquid fuel. Journal of Thermal Analysis and Calorimetry, 147, 3495-3508. https://doi.org/10.1007/s10973-021-10776-5
  • Iwko, J., Wróblewski, J. (2019). Experimental study on energy consumption in the plasticising unit of the injection molding machine. International Scientific Journal "Industry 4.0", 4(5), 241-245.
  • Janik, H., Sienkiewicz, M., Borzędowska-Labuda, K. (2018). Polymer modified bitumen. IX International Scientific-Technical Conference: Advance in PEtroleum and Gas Industry and Perochmistry, 14-17. https://mostwiedzy.pl/en/publication/polymer-modified-bitumen,145259-1
  • Joohari, I.B., Giustozzi, F. (2020). Hybrid polymerisation: An exploratory study of the chemo-mechanical and rheological properties of hybrid-modified bitumen. Polymers, 12(4), 945. https://doi.org/10.3390/polym12040945
  • Joohari, I.B. (2021). Development of hybrid polymer modified bitumen for road pavement applications. Dissertation. 1-239. Royal Melbourne Institute of Technology, Australia.
  • Karali, N., Khanna, N., Shah, N. (April 2024). Climate Impact of Primary Plastic Production. Sustainable Energy and Environmental Systems Department. Lawrence Berkeley National Laboratory. 109. https://escholarship.org/uc/item/6cc1g99q
  • Kazmi, S., Rao, D.G. (2015). Utilisation of waste plastic materials as bitumen-blends for road construction in Oman. Scholars Journal of Engineering and Technology, 3(1A), 9-13. https://saspublishers.com/article/2598/download/
  • Kibria, M.G., Masuk, N.I., Safayet, R., Nguyen, H.Q., Mourshed, M. (2023). Plastic waste: challenges and opportunities to mitigate pollution and effective management. International Journal of Environmental Research, 17(1), 20. https://doi.org/10.1007/s41742-023-00507-z
  • Kuczenski, B., Geyer, R. (2010). Material flow analysis of polyethylene terephthalate in the US, 1996-2007. Resources, Conservation and Recycling, 54(12), 1161-1169. https://doi.org/10.1016/j.resconrec.2010.03.013
  • Lechner, M.D. (2005). Polymers. In: Springer Handbook of Condensed Matter and Materials Data. (Eds.) Martiensen, W., Warlimont, H. On line at: http://www.springer.com/978-3-540-44376-6, 477-522.
  • Löpez, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adractos, A. (2010). Pyrolysis of municipal plastic wastes: influence of raw material composition. Waste Management, 30(4), 620-627. https://doi.org/10.1016/J.wasman.2009.10.014
  • Marczak, H. (2019). Analysis of the energetic use of fuel fractions made of plastic waste. Journal of Ecological Engineering, 20(8), 100-106. https://doi.org/10.12911/22998993/110766
  • Maslak, Anastasia L. (2021).Thermochemical conversion of plastic to value added products. Electronic Thesis and Dissertation Repository. 8299. https://ir.lib.uwo.ca/etd/8299
  • Mining Explosives Market Insights, 2031. (2021). https://www.transparencymarketresearch.com/mining-explosives-market.html
  • Mohanan, N., Montazer, Z., Sharma, P.K., Levin, D.B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709
  • Monkul, M.M. & Özhan, H.O. (2021). Microplastic contamination in soils: A review from geotechnical engineering view. Polymers, 13, 4129. https://doi.org/10.3390/polym13234129
  • Mutha, N.H., Patel, M., Premnath, V. (2006). Plastics material flow analysis for India. Resources, Conservation and Recycling, 47(3), 222-244. https://doi.org/10.1016/j.resconrec.2005.09.003
  • Namkung, H., Park, S.-I., Lee, Y., Han, T.U., Son, J.-I., Kang, J.-G. (2022). Investigation of oil and facility characteristics of plastic waste pyrolysis for the advanced waste recycling policy. Energies, 15, 4317. https://doi.org/10.3390/en15124317
  • Nanda, S., Berruti, F. (2021). Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 19, 123-148. https://doi.org/10.1007/s10311-020-01094-7
  • OECD (2022). Global Plastics Outlook: Policy Scenarios to 2060, OECD Publishing, Paris. https://doi.org/10.1787/aa1edf33-en
  • Oluwoye, I., Dlugogorski, B.Z., Gore, J., Okierski, H.C., Altarawneh, M. (2017). Atmospheric emission of NOx from mining explosives: A critical review. Atmospheric Environment, 16(167), 81-96. https://doi.org/10.1016/j.atmosenv.2017.08.006
  • Orgianni, C., De Filippis, P., Pochetti, F., Paolucci, M. (2002). Gasification process of waste containing PVC. Fuel, 81(14), 1827-1833.https://doi.org/10.1016/S0016-2361(02)00097-2
  • Pan, D., Su, F., Liu, Ch., Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3(4), 443-461. https://doi.org/10.1007/s42114-020-00190-0
  • Panda, A.K., Singh, R.K., Mishra, D.K. (2010). Thermolysis of waste plastics to liquid fuel a suitable method for plastic waste management and manufacture of value added products – a world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. https://doi.org/10.1016/j.rser.2009.07.005
  • Pinto, F., Franco, C., Andre, R.N., Miranda, M., Gulyutlu, I., Cabrita, I. (2002). Co-gasification study of biomass mixed with plastic waste. Fuel, 81, 291-297. https://api.semanticscholar.org/CorpusID:93399055
  • Plastics Europe. (2023). Eco-profiles for determining environmental impacts of plastics. https://plasticseurope.org/sustainability/circularity/life-cycle-thinking/eco-profiles-set/
  • Poddar S.K., Paranjpe A. (2015). Energy recovery through plastic waste in cement industry: A review. International Journal of Recent Development in Engineering and Technology, 4, 15-18. https://www.ijrdet.com/files/Volume4Issue5/IJRDET_0515_03.pdf
  • Pragnesh N Dave, Asim K Joshi. (2010). Plasma pyrolysis and gasification of plastics waste – A review. Journal of Scientific & Industrial Research, 69(3), 177-179. https://www.researchgate.net/publication/229020408
  • Prakash, A., Palkar, R.R. (2023). Co-processing of plastic waste in a cement kiln: a better option. Environmental Science and Pollution Research, 30, 24804-24814. https://doi.org/10.1007/s11356-021-17725-7
  • Punčochářa, M., Ruj, B., Chatterjee, P.K. (2012). Development of process for disposal of plastic waste using plasma pyrolysis. Procedia Engineering, 42, 420-430. https://doi.org/10.1016/j.proeng.2012.07.433
  • Rahimi, A., García, J. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1, 0046. https://doi.org/10.1038/s41570-017-0046
  • Ritchie, H., Samborska, V., Roser, M. (2023). Plastic pollution. Published online at: OurWorldInData.org. https://ourworldindata.org/plastic-pollution
  • RNS. Romanian National Standard. (2010). SR EN ISO 1716. Fire standard for construction materials, Determining the gross calorific value of solid fuels (in Romanian). https://cdn.standards.iteh.ai/samples/45780/c4160d8dec954762800c181854e7672f/ISO-1716-2010.pdf
  • Rodrigues, M.O., Abrantes, N., Goncalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environmental Toxicology and Pharmacology, 72, 103239. https://doi.org/10.1016/j.etap.2019.103239
  • Sabadra, V. (2017). Use of polymer modified bitumen in road construction. International Research Journal of Engineering and Technology, 04(12), 799-801. https://www.irjet.net/archives/V4/i12/IRJET-4I12152.pdf
  • Scott, G. (2007). Polymers and the Environment. Royal Society of Chemistry, London. https://doi.org/10.1039/9781847551726
  • Sekiguchi, H., Orimo, T. (2004). Gasification of polyethylene using steam plasma generated by microwave discharge. Thin Solid Films, 457(1), 44-47. https://doi.org/10.1016/j.tsf.2003.12.035
  • Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: a comprehensive. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005
  • Shah, Z., Gulzar, M., Hasan, F., Shah, A.A. (2016). Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polymer Degradation and Stability, 134(4), 349-356. https://doi.org/1016/j/polymdegradstab.2016.11.003
  • Sharma, N., Vuppu, S. (2023). In silico study of enzymatic degradation of bioplastic by microalgae: An outlook on microplastic environmental impact assessment, challenges, and opportunities. Molecular Biotechnology September, 27. https://doi.org/10.1007/s12033-023-00886-w
  • Sharma, V., Hossain, A.K., Griffiths, G., Duraisamy, G., Krishnasamy, A., Ravikrishnan, V., Sodré, J.R. (2022). Plastic waste to liquid fuel: A review of technologies, applications, and challenges. Sustainable Energy Technologies and Assessments, 53(C), 102651. https://doi.org/10.1016/j.seta.2022.102651
  • Shi, H. (2015). Characterisation, heating value modeling and pyrolysis studies of municipal solid wastes. University Press: Calgary. 106. http://dx.doi.org/10.11575/PRISM/25264
  • Silvestrov, V.V., Bordzilovskii, S.A., Karakhanov, S.M., Plastinin A.V. (2014). On possibility of detonation products temperature measurements of emulsion explosives. Archives of Metallurgy and Materials, 59(3), 1151-1154. https://doi.org/10.2478/amm-2014-0200
  • Siracusa, V. (2019). Microbial degradation of synthetic biopolymers waste. Polymers, 11(6), 1066-1083. https://doi.org/10.3390/polym11061066
  • Slapak, M.J.P., van Kasteren, J.M.N., Drinkenburg, A.A.H. (2000). Design of a process for steam gasification of PVC waste. Resources Conservation and Recycling, 30(2), 81-93. https://doi.org/10.1016/S0921-3449(00)00047-1
  • Smriti D., Richa, D. Kulshrestha, D.A. (2016). Role of plasma in disposing the plastic. International Journal of Pure and Applied Researches, 3(1), 11-17. https://api.semanticscholar.org/CorpusID:208342469
  • Song, S.X., Hu, J., Wu, Z.W. (2012). The pulverisation and its dynamic model of waste thermosetting phenol-formaldehyde resins. Applied Mechanics and Materials, 130-134, 1470-1474. https://doi.org/10.4028/www.scientific.net/AMM.130-134.1470
  • Stegmann, P., Daioglou, V., Londo, M., Junginger, M. (2022). The plastics integrated assessment model (PLAIA): Assessing emission mitigation pathways and circular economy strategies for the plastics sector. MethodsX, 9(2), 101666. https://doi.org/10.1016/j.mex.2022.101666
  • Štimac, B., Škrlec, V., Dobrilović, M., Sućeska, M. (2020). Numerical modelling of non-ideal detonation in ANFO explosives applying Wood-Kirkwood theory coupled with EXPLO5 thermochemical code. Defence Technology, 17(5), 1740-1752. https://doi.org/10.1016/j.dt.2020.09.014
  • Sućeska, M. (2001). EXPLO5 – Computer program for calculation of detonation parameters. Proc. of 32nd International Annual Conference of ICT. Energetic Materials, Ignition, Combustion and Detonation. 110.1-110.13. Karlsruhe, Germany. https://www.researchgate.net/publication/268390920
  • Sulyman, M. (2017). Study on polymer modified road asphalt mixture. Thesis, nostrification. Gdańsk University of Technology. 1-201. https://mostwiedzy.pl/en/publication/study-on-polymer-modified-road-asphalt-mixture,155596-1
  • Thanh, N.P., Matsui, Y., Fujiwara, T. (2011). Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam. Environmental Monitoring Assessment, 175(1-4), 23-35. https://doi.org/10.1007/s10661-010-1490-8
  • Thiriez, A. & Gutowski, T. (2006). An environmental analysis of injection molding. Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment. 195-200. Scottsdale, AZ, USA. https://doi.org/10.1109/ISEE.2006.1650060
  • Titone, V., Botta, L., Mistretta, M.C., La Mantia, F.P. (2024). Influence of a biodegradable contaminant on the mechanical recycling of a low-density polyethylene sample. Polymer Engineering & Science, 64(2), 845-851. https://doi.org/10.1002/pen.26588
  • TNO. (2020). Phyllis 2: Database for the physico-chemical composition of (treated) lignocellulosic biomass, micro- and macroalgae, larious leedstocks for liogas production and biochar. Retrieved May 8, 2019. https://phyllis.nl/
  • Tsiamis, D.A., Castaldi M.J. (2016). Determining accurate heating values of non-recycled plastics. City University of New York. https://www.wtert.net/member/1825/Demetra_Tsiamis.html
  • Uekert, T., Kuehnel, M., Wakerley, D., Reisner, E. (2018). Plastic waste as a feedstock for solar-driven H 2 generation. Energy Environ Science, 11(10), 2853-2857. http://dx.doi.org/10.1039/c8ee01408f
  • UltraTech Cement Limited. (2021). Making a material difference. Sustainability Report 2021-22. Mumbai, Maharashtra, India. www.ultratechcement.com
  • Urbański, T. (1954). Chemistry and technology of explosives. (in Polish: Chemia i technologia materiałów wybuchowych). Ministerstwo Obrony Narodowej, Warszawa.
  • Vasilescu, G., Kovacs, A., Gheorghiosu, E., Garaliu, B., Ilcea G. (2020). Numerical simulation for determining detonation parameters of explosive substances using EXPLO5 thermochemical prediction software. MATEC Web of Conferences, 305, 00049. 9th International Symposium on Occupational Health and Safety (SESAM 2019). https://doi.org/10.1051/matecconf/202030500049
  • Villanueva, A., Eder, P. (2014). End-of-waste criteria for waste plastic for conversion: Technical proposals. Environmental Science. https://doi.org/10.2791/13033
  • Vlachopoulos, J. (2009). An assessment of energy savings derived from mechanical recycling of polyethylene versus new feedstock. A report prepared for the World Bank. Version 3.2. Canada. https://api.semanticscholar.org/CorpusID:219618535
  • Walters, R.N., Lyon, R.E., Hackett, S.M. (2000). Heats of combustion of high-temperature polymers. Fire and Materials, 24(5), 245-252. https://api.semanticscholar.org/CorpusID:39300177
  • Wucher B., Lani F., Pardoen T., Bailly Ch., Martiny P. (2014). Tooling geometry optimisation for compensation of cureinduced distortions of a curved carbon/epoxy C-spar. Composites Part A, 56, 27-35. https://doi.org/10.1016/j.compositesa.2013.09.010
  • Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715, 136968. https://doi.org/10.1016/j.scitotenv.2020.136968
  • Zeller, M., Netsch, M., Richter, F., Leibold, H., Stapf, D. (2021) Chemical recycling of mixed plastic wastes by pyrolysis – pilot scale investigations. Chemie Ingenieur Technik, 93(11), l763-1770. https://doi.org/10.1002/cite.202100102
  • Zhou, N., Dai, L., Lv, Y., Li, H., Deng, W., Guo, F., Chen, P., Lei, H., Ruan, R.R. (2021). Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 418, 129412. https://api.semanticscholar.org/CorpusID:233536413
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84ae8045-ebd0-4c5f-b5b7-093085296396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.