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Abstract

This paper investigates the event-based state estimation for discrete-time recurrent de-
layed semi-Markovian neural networks. An event-triggering protocol is introduced to
find measurement output with a specific triggering condition so as to lower the burden of
the data communication. A novel summation inequality is established for the existence
of asymptotic stability of the estimation error system. The problem addressed here is to
construct an H∞ state estimation that guarantees the asymptotic stability with the novel
summation inequality, characterized by event-triggered transmission. By the Lyapunov
functional technique, the explicit expressions for the gain are established. Finally, two
examples are exploited numerically to illustrate the usefulness of the new methodology.
Keywords: Discrete-time neural networks, Mixed time delays, asymptotic stability, event-
triggered control.

1 Introduction

Recurrent neural network (RNN) models have
procured their heed over a few decades in both the-
ory and applications in many practical areas in-
cluding automatic control, image processing, com-
binatorial optimization, fault diagnosis, associative
memory, etc [1, 2, 3, 4, 5, 6]. There has been good
attention towards research from a variety of com-
munities on the inherent features of the RNNs like
the stability, synchronization, attractivity issues,

analysis problems and their dynamical behaviour
based on the mathematical properties which excel
in approximating, clustering and learning the differ-
ent concepts of RNNs [7, 8, 9]. Moreover, the rapid
development of digital technology owing to the en-
gineering significance has stirred much attention on
discrete-time NNs [10, 11, 12, 13, 14, 15, 16] over
the conventional continuous-time ones.

Time delays have become a universal observ-
able fact often seen in a variety of fields resulting
in divergence or oscillation or instability of the net-
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work system. Moreover, the hardware implementa-
tion of NN’s gives rise to the axonal transmission
delays and multitude parallel pathways. Hence, it
becomes indispensable to construct a realistic NN
model which includes both discrete and distributed
delays. Also, in some NN’s time delay exists in
a stochastic fashion characterized by certain proba-
bilistic distributions such as normal distribution and
Binomial distribution [17, 18, 19].

On another research front, one of the most re-
curring topis emerging in the RNNs is the state esti-
mation problem of RNNs. The most challenging
task in solving a state estimation problem, is the
fact that a typical RNN comprises the complexity
of NNs with a large number of interconnected net-
work nodes characterized by strong nonlinearities,
high couplings reflecting the topological properties
and signal transmission over the links causing time-
delays. Therefore, it becomes often crucial to ac-
quire partial information about the network state of
the neuron. The state estimation algorithms, there-
fore become significant in both theory and in prac-
tice. It is worth noting that the event-triggered com-
munication protocol has attracted the control com-
munity due to the uniqueness in threshold trigger
and the time-triggered scheme in network band-
width suffers from excessive consumption of lim-
ited resources due to the unnecessary signal trans-
missions. However, larger thresholds correspond to
slower changing rate wherein smaller thresholds re-
quire a faster changing rate. Up to now, there is a
wealth of literature that has focused on designing
the state estimators on time delayed RNNs, see for
example, [20, 21, 22, 23, 24, 25, 26, 27, 28].

Execution of RNN involves information latch-
ing which tends to become more severe when there
is an increase in length of the temporal sequence,
resulting the RNNs switching from time to time
between finite modes or patterns which in turn re-
veals that the jump linear systems depend upon the
sojourn-time h and has received much research at-
tention [29, 30]. It is to be noted that some of the en-
gineering practices of control or filtering, due to the
lack of entries in the transition matrix, may not be
fully accessible, leading to deficient transition prob-
abilities. In a more general situation, jump linear
system becomes the semi-Markovian jump system
[31, 32, 33] wherein the transition rates are time-
varying rather than being constant as in Markovian

jump systems. Therefore, the semi-Markov system
has a lot of advantages to that of Markovian jump
systems as it has varied rates of transition on time
than constants due to the relaxed distributions in
probability.

On the other hand, analysis based on the sys-
tems’ stability with regard to delays has become
the hot research topic in the field of control theory
for the past few decades. As it is well known, the
Jensen inequality technique is an appropriate tool to
analyze the stability in terms of LMI’s by tractable
derivations [34, 35]. However, the Jensen inequality
introduces some unavoidable and undesirable con-
servatism in the stability conditions. One of the
most challenging problems is to estimate the lower
bound or to obtain a tighter bound of the summa-
tion term which helps in reducing the conservatism.
On this basis, a novel summation inequality is es-
tablished from the extended Jensen’s inequality.

On account of the above discussions, we are in
a practical need to consider the asymptotic stability
RNNs based on H∞ state estimation with event trig-
gering scheme and mixed delays subject to discrete
summation inequality.

The organization of the paper is as follows. For-
mulation of problem is in Section 2, followed by the
results given in Section 3, where lemmas and sum-
mation inequalities along with the method to calcu-
late the filter parameters are presented. Section 4
provides the efficacy of the derived results through
numerical simulations, and Section 5 gives the con-
clusion.

2 Problem Formulation

We consider the sample space Ω with (Ω,F ,P )
being the fixed space in the probability with its
measure being P on F . Letting the semi-Markov
{r(k),k ≥ 0} to be the state in the discrete-time with
a finite set S= {1,2, . . . ,M}, the process describing
the evolution of r(k) is governed as follows:

Pr{ r(k+h) = j|r(k) = l}

=

{
γl j(h)h+o(h) l ̸= j

1+ γl j(h)h+o(h) l = j
(1)

where o(h) is limh→0(o(h)/h) = 0 and γl j(h) ≥ 0,
for l ̸= j, is the transition rate from mode l at time
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k to mode j at time k+h and

γll(h) =− ∑
j∈S, j ̸=l

γl j(h) (2)

The discrete-time stochastic semi-Markov jump
NNs with mixed time delays:



x(k+1) = A(r(k))x(k)+Ad(r(k)) f (x(k))
+ B(r(k))Mgτk(x(k))+C(r(k))

×
k−1

∑
s=k−d

h(x(s))+ J(k)+Dw(k)

z(k) = Lx(k),
x(s) = ψ(s), s ∈ [−max{τM,d},0]

(3)

where x(k) = vecn{xl(k)} ∈ Rn is the l-
th neuron at k th instant time vector of
the NN; f (x(k)) = vecn{ fl(xl(k)},g(x(k)) =
vecn{gl(xl(k))},h(x(k)) = vecn{hlxl(k)},
gτk(x(k)) = vecn{g(k− τl(k))} ∈ Rn are the neu-
ron activation functions. The state z(k) ∈ R with
J(k) = vecn{Jl(xl(k))} being the exogenous in-
put on the space (Ω,F ,P ) with σ2 = E{ω2} = 1.
A(r(k)) = diagn{al} is the state feedback coeffi-
cient, Ad = (adl j)n×n is the potential neuron with
its connection weight, discrete delay and dis-
tributively delayed connection weights given re-
spectively as Ad(r(k)) = (adl j r(k))n×n,B(r(k)) =
(bl jr(k))n×n and C(r(k)) = (cl jr(k))n×n; J(k) =
vecn{Jl(k)},L = (ll j)r×n is the known scalar, D =
vecn{dl}; M = vecT

n {MT
l } with

Ml = diag{0 . . .0︸ ︷︷ ︸
l−1

1 0 . . .0︸ ︷︷ ︸
n−l

}, Let d denotes the

constant distributed time-delay and the positive in-
teger τ j(k) denotes the time-varying delay which
satisfies τm ≤ τ j(k) ≤ τM and τ j(0) = τM is been
assumed and ψl(s) is the given initial condition
sequence. The following assumption is needed,
throughout this paper.

Assumption 1. For every 1 ≤ i ≤ m,, the activa-
tion function for stochastic NN model 3, satisfies
the following conditions:

δ−i ≤ fi(m1)− fi(m2)

m1 −m2
≤ δ+i , (4)

β−
i ≤ gi(m1)−gi(m2)

m1 −m2
≤ β+

i , (5)

γ−i ≤ hi(m1)−hi(m2)

m1 −m2
≤ γ+i , (6)

with m1,m2 ∈ R and δ−i ,δ
+
i ,β

−
i ,β

+
i ,γ

−
i ,γ

+
i are

some constants.

In this paper, the measurement output signal is
given as

y(k)� Ex(k)+Fv(k) (7)

with the output measurement y(k) = vecT
m{yl(k)} ∈

Rm, the l-th entry is yl(k) and the bounded distur-
bance is v(k) ∈ Rp with its constraint ||v(k)||2 ≤ v̄
provided with constant matrices, E ∈ Rm×n and
F ∈ Rm×p.

2.1 The strategy of Event-Triggering

Main motive of this paper is to estimate the state
of a neuron (2), by the output measurement y(k)
in (7). One should adhere to the strategy of event
triggering, for resource-saving purpose so that the
output measurement is released at different time in-
stants to the state estimator.
Here, the mechanism of event-triggering is intro-
duced such that the event instant series to that of
the current l-th measurement component is tl

0 =
0 < tl

1 < tl
2 < · · · < tl

l < .. . , with the latest trig-
gering time kp with its current sampling instant
k∈ [tpl , tp+1), where for every increasing monotonic
sequence ts with s = 0 to s = ∞, the event generator
function is defined as ϕl : R3 → R,(l = 1,2, . . . ,n)
with

ϕl(yl(k),yl(kl
p)),θl)� ||yl(k)− yl(kl

p)||2 −θl (8)

Based on this scheme, the data measurement of the
l-th entry from the measurement device released to
the estimator satisfies the condition,

ϕl(yl(k),yl(kl
p))> 0 (9)

where θl is the threshold which adjusts itself and
decides its rate of triggering based on the required
practicals. Hence, measurement output of the l-th
component in the new triggering instant can be iter-
ated as

tl
p+1 = min{k|k > tl

p, ϕl(yl(k),yl(kl
p),θl)> 0}

(10)
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2.2 State Estimation

Let the triggering instant of the output measure-
ment be denoted by

y(kp)� [y1(k1
p) y2(k2

p) . . . ym(km
p )]

T (11)

where ki
p for (i= 1, . . . ,m) is the measurement com-

ponent with respect to the triggering instant.

Construction of the event based neuron state es-
timator is given by (3):



x̂(k+1) = Alx̂(k)+Adl f (x̂(k))+BiMgτk(x̂(k))

+ Cl

k−1

∑
s=k−d

h(x̂(s))+ J(k)

+ K[y(kp)−Ex̂(k)]
ẑ(k) = Lx̂(k),
x̂(s) = ψ(s), s ∈ [−max{τM,d},0]

(12)

where the estimation of x(k) is x̂(k) and z(k) is ẑ(k)
and the gain estimator is K which is to be deter-
mined.
Let us define ϖ(k)� y(kp)−y(k) which is given by
(12) and is rewritten as



x̂(k+1) = Alx̂(k)+Adl f (x̂(k))+BlMgτk(x̂(k))

+ Cl

k−1

∑
s=k−d

h(x̂(s))+ J(k)

+ K[ϖ(k)+ y(k)−Ex̂(k)]
ẑ(k) = Lx̂(k),
x̂(s) = 0, s ∈ [−max{τM,d},0]

(13)

Moreover, noting x̃(k+1) = x(k)− x̂(k) and the er-
ror dynamics is z̃(k+ 1) = z(k)− ẑ(k) given in (3)
and (13)



x̃(k+1) = Ãl x̃(k)+Adl f̃ (x̃(k))+BlMg̃τk(x̃(k))

+ Cl

k−1

∑
s=k−d

h̃(x̃(s))

− Kϖ(k)−KFv(k)+Dw(k)
z̃(k) = Lx̃(k),
x̃(s) = ψ(s), s ∈ [−max{τM,d},0]

(14)

where

f̃ (x̃(k)) = f (x(k))− f (x̂(k))

g̃τk(x̃(k)) = g̃τk(x(k))− g̃τk(x̂(k))

h̃(x̃(k)) = h(x(k))−h(x̂(k)), Ã = A−KE.

Definition 1. The NN (14) is asymptotically and
globally stable in the square mean with each of its
solution x(k) given by:

lim
k→+∞

E
{
||x(k)||2

}
= 0 (15)

Lemma 1: For given n × n matrix G > 0, with
ς1,ς2,ς3, . . .ςn ∈ Rn, IR(ς) = ∑n

k=0 ςT
k Gςk, the fol-

lowing inequality

IR(ς)≥
1

n+1

(
n

∑
k=0

ςT
k

)
G

(
n

∑
k=0

ςk

)
(16)

+
3

n(n+1)(n+2)
ΛT

0 GΛ0

where Λ0 = ∑n
k=0(n−2k)ςk.

Lemma 2: For a given n×n positive definite matrix
G ≥ 0, and for all u0,u1,u2, . . .un ∈ Rn, the follow-
ing inequality holds;

n

∑
k=0

∆uT
k G∆uk ≥

1
n+1

(un+1 −u0)
T G (un+1 −u0)

+
3

n+1
ΛT

1

(
n+2

n
G
)

Λ1 (17)

where ∆uk = uk+1 − uk and Λ1 = un+1 + u0 −
2

n+2

n+1

∑
k=0

uk.

Lemma 3: For every discrete-time variable ar-
ranged in a sequence, there exists a given matrix
U > 0, with ξ in [−�,0]∩Z→ Rn, such that

0

∑
i=−�+1

0

∑
j=i

ξ̂T (k)Uξ̂(k)≥ 2(�+1)
�

ϒT
0 Uϒ0

+
4(�+1)(�+2)

�(�−1)
ϒT

1 Uϒ1 (18)

where ϒ0 = x(0) − 1
�+1

0

∑
i=−�

x(i), ϒ1 = x(0) +

2
�+1

0

∑
i=−�

x(i)− 6
(�+1)(�+2)

0

∑
i=−�

0

∑
k=i

x(k).

3 Main Results

So as to assure the stability analysis, in this
section the summation inequalities with respect to
discrete and distributed delays, have been demon-
strated. For simplicity, the blocked matrices are
eq ∈ R17n×n(q = 1,2, . . . ,17). The other notations
of several matrices are defined as
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τ12 � τM − τm,η(k)� x̃(k+1)− x̃(k),

Um � diag{l−1 , l
−
2 , . . . l

−
n },Up � diag{l+1 , l

+
2 , . . . l

+
n }

êr � Ãle1 +Adle11 +BlMe12 +Cle14 −Ke16

−KFe17,ζ(k)�
[
x̃T (k), x̃T (k− τm), x̃T

τk
(k),

x̃T (k− τM),
1

τm +1

k

∑
s=k−τm

x̃T (s),

1
τk − τm +1

k−τm

∑
s=k−τk

x̃T (s),
1

τM − τk +1

k−τk

∑
s=k−τM

x̃T (s),

k−1

∑
s=k−τm

x̃T (s)
k−1

∑
i=k−τm+1

i−1

∑
s=k−τm

x̃T (s),

0

∑
i=−τm+1

k

∑
s=k+i

x̃T (s), f̃ T (x̃(k)), g̃T (x̃τk(k))),

h̃T (x̃(k)),
k−1

∑
j=k−τm

h̃T (x̃(k)), ηT (k), ϖT (k),

vT (k)
]

Θ0 � [Ãl,0,0,0,0,0,0,0,0,0,Adl,BlM,0,Cl,

−K,−KF ]Θ1 � [ΘT
0 ,(τm +1)eT

5 − eT
2 ,

(τk − τm +1)eT
6 +(τM − τk +1)eT

7 − eT
3 − eT

4 ]
T ,

Θ2 � [eT
1 ,(τm +1)eT

5 − eT
1 ,(τk − τm +1)eT

6

+(τM − τk +1)eT
7 − eT

3 − eT
2 ]

T ,

Θ3 � [Ãl − I,0,0,0,0,0,0,0,0,0,Adl ,BlM,

0,Cl,−K,−KF ],Θ4 � [eT
1 − eT

2 , eT
1 + eT

2

−2eT
5 ]

T ,Θ5 � [eT
2 − eT

3 ,e
T
2 + eT

3 −2eT
6 ,e

T
3 − eT

4 ,

eT
3 + eT

4 −2eT
7 ]

T ,Θ71 � e1 −
1

τm +1
(e8 + e1),

Θ72 � e1 +

(
2

τm +1
− 6

(τm +1)(τm +2)

)

× (e1 + e8)−
6

(τm +1)(τm +2)
e10,

Π̃1(τ(k))� diag
{

Π1
1(τ(k)), . . . ,Π

n
1(τ(k))

}
,

Πl
1(τ(k))�

{
n

∑
l=1

{
1
2

sym{(Θ1 +Θ2)
T

Pl(Θ1 +Θ2)}
}}

,Π̃2 � diag
{

Π1
2, . . . ,Π

n
2
}
,

Π2 �
{

n

∑
l=1

{
eT

1 Ql
1e1 − eT

2 Ql
1e2 + eT

2 Ql
2e2

−eT
4 Ql

2e4

}}
,Π̃3 � diag

{
Π1

3, . . . ,Π
n
3
}
,

Πl
3 �

{
n

∑
l=1

{
deT

13Rl
1e13 − e14Rl

1e14

}}
,

Π̃4 � diag
{

Π1
4, . . . ,Π

n
4
}
,Πl

4 �
{

n

∑
l=1

{
ΘT

3

×τ2
mSl

1Θ3 −ΘT
4




Sl
1 0

0 3
(τm +1)
τm −1

Sl
1




T

Θ4





 ,

Π̃5 � diag
{

Π1
5, . . . ,Π

n
5
}
,Πl

5 �
{

n

∑
l=1

{
ΘT

3

×(τ2
12Sl

2)Θ3 −ΘT
5 Γ̃1Θ5

}}
,

Γ̃1 � diag
{

Γ1
1, . . . ,Γ

n
1
}
,

Γl
1 �




n

∑
l=1







Sl
2 0 Y11 Y12

0 3Sl
2 Y21 Y22

Y T
11 Y T

21 Sl
2 0

Y T
12 Y T

22 0 3Sl
2









,

Π̃6 � diag
{

Π1
6, . . . ,Π

n
6
}
,Π6 �

{
n

∑
l=1

{
[τ2

meT
1 Zl

1e1

−[(τm +1)e5 − e1]
T Z1[(τm +1)e5 − e1]−

3
τ2

m −1

×[2e9 − (τm −1)((τm +1)e5 − e1]
T Zl

1[2e9

−(τm −1)((τm +1)e5 − e1]}} ,
Π̃7 � diag

{
Π1

7, . . . ,Π
n
7
}
,

Π7 �
{

n

∑
l=1

{
τm(τm +1)

2
eT

15Zl
2e15 −

2(τm +1)
τm

ΘT
71Zl

2Θ71

−4(τm +1)(τm +2)
τm(τm −1)

ΘT
72Zl

2Θ72

}}
,

ϒ �−sym{(e11 − e1Um)Y1(e11 − e1Up)
T +(e13 − e1Um)

Y2(e13 − e1Up)
T +(e14 − e3Um)Y3(e14 − e3Up)

T},

Π(τ(k))� Π1(τ(k))+
7

∑
t=2

Πt +ϒ



212 Yang Cao, K. Maheswari, S. Dharani, K. Sivaranjani

Theorem 1: For given integers 0 ≤ τm ≤ τM, sys-
tem (14) is stable asymptotically for τm ≤ τM, with
matrices P ∈ R3n×3n,Q1 ∈ Rn×n,Q2 ∈ Rn×n,R1 ∈
Rn×n,S1 ∈ Rn×n,S2 ∈ Rn×n,Z1 ∈ Rn×n,Z2 ∈
Rn×n,> 0 diagonal matrices Ya ∈ Rn×n > 0,(a =
1,2,3), with the positive scalars ε1,ε2 and any ma-
trices Y11,Y12,Y21,Y22 ∈ Rn×n with the event trig-
gering condition and the triggering threshold θa

satisfying the following LMIs,

Σ̃(τ(k))< 0, Γ > 0, (19)

Ξ̃τm(h)+Ω < 0, Ξ̃τm(h)+Ω < 0. (20)

Proof: Let the Lyapunov functional for NN be

V (k, x̃(k)) =
7

∑
b=1

Vb(k, x̃(k)), (21)

where

V1(k, x̃(k)) =
n

∑
l=1

{
ξT (k)Plξ(k)

}
,

V2(k, x̃(k)) =
n

∑
l=1

{
k−1

∑
s=k−τm

x̃T (s)Ql
1x̃(s)

+
k−1

∑
s=k−τM

x̃T (k)Ql
2x̃(k)

}
,

V3(k, x̃(k)) =
n

∑
l=1

{
k−1

∑
i=k−d

k−1

∑
j=i

h̃T (x̃( j))Rl
1h̃(x̃( j))

}
,

V4(k, x̃(k)) =
n

∑
l=1

{
τm

0

∑
i=−τm+1

k

∑
j=k+i

ηT ( j−1)Sl
1η( j−1)

}
,

V5(k, x̃(k)) =
n

∑
l=1

{
τ12

−τm

∑
i=−τM+1

k

∑
j=k+i

ηT ( j−1)Sl
2η( j−1)

}
,

V6(k, x̃(k)) =
n

∑
l=1

{
τm

0

∑
i=−τm+1

k

∑
j=k+i

x̃T ( j−1)Zl
1x̃( j−1)

}
,

V7(k, x̃(k)) =
n

∑
l=1

{
0

∑
i=−τm+1

0

∑
u=i

k

∑
j=k+u

ηT ( j)Zl
2η( j)

}
,

with η(k) = x̃(k+1)− x̃(k) and

ξ(k) =

[
x̃T (k),

k−1

∑
j=k−τm

x̃T ( j),
k−τm−1

∑
j=k−τM

x̃T ( j),

]T

,

(22)

Taking up the mathematical expectations and find-
ing the difference of V (k) along the trajectories of
(14), we get,

E{∆V (x(k))}=E

{
7

∑
b=1

∆Vb(k)

}
(23)

with

E{∆V1(k)}= E

{
n

∑
l=1

ζT (k)(ΘT
1 PlΘ1

−ΘT
2 PlΘ2)ζ(k)

}

= E

{
n

∑
l=1

ζT (k)(Θ1 +Θ2)
T

×Pl(Θ1 −Θ2)
T ζ(k)

}

= E

{
n

∑
l=1

ζT (k)Πl
1(τ(k))ζ(k)

}

= E
{

ζT (k)Π̃1(τ(k))ζ(k)
}

(24)

E{∆V2(k)}= E

{
n

∑
l=1

ζT (k)(eT
1 Ql

1e1 − eT
2 Ql

1e2

+eT
2 Ql

2e2 − eT
4 Ql

2e4)ζ(k)
}

= E

{
n

∑
l=1

{
ζT (k)Πl

2ζ(k)
}}

= E
{

ζT (k)Π̃2ζ(k)
}

(25)
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7
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where
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∑
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∑
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∑
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i=k−d

k−1

∑
j=i

h̃T (x̃( j))Rl
1h̃(x̃( j))

}
,

V4(k, x̃(k)) =
n

∑
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τm

0

∑
i=−τm+1

k

∑
j=k+i

ηT ( j−1)Sl
1η( j−1)

}
,

V5(k, x̃(k)) =
n

∑
l=1

{
τ12

−τm

∑
i=−τM+1

k

∑
j=k+i

ηT ( j−1)Sl
2η( j−1)

}
,

V6(k, x̃(k)) =
n

∑
l=1

{
τm

0

∑
i=−τm+1

k

∑
j=k+i

x̃T ( j−1)Zl
1x̃( j−1)

}
,

V7(k, x̃(k)) =
n

∑
l=1

{
0

∑
i=−τm+1

0

∑
u=i

k

∑
j=k+u

ηT ( j)Zl
2η( j)

}
,

with η(k) = x̃(k+1)− x̃(k) and

ξ(k) =

[
x̃T (k),

k−1

∑
j=k−τm

x̃T ( j),
k−τm−1

∑
j=k−τM

x̃T ( j),

]T

,

(22)

Taking up the mathematical expectations and find-
ing the difference of V (k) along the trajectories of
(14), we get,

E{∆V (x(k))}=E

{
7

∑
b=1

∆Vb(k)

}
(23)

with

E{∆V1(k)}= E

{
n

∑
l=1

ζT (k)(ΘT
1 PlΘ1

−ΘT
2 PlΘ2)ζ(k)

}

= E

{
n

∑
l=1

ζT (k)(Θ1 +Θ2)
T

×Pl(Θ1 −Θ2)
T ζ(k)

}

= E

{
n

∑
l=1

ζT (k)Πl
1(τ(k))ζ(k)

}

= E
{

ζT (k)Π̃1(τ(k))ζ(k)
}

(24)

E{∆V2(k)}= E

{
n

∑
l=1

ζT (k)(eT
1 Ql

1e1 − eT
2 Ql

1e2

+eT
2 Ql

2e2 − eT
4 Ql

2e4)ζ(k)
}

= E

{
n

∑
l=1

{
ζT (k)Πl

2ζ(k)
}}

= E
{

ζT (k)Π̃2ζ(k)
}

(25)
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E{∆V3(k)}= E

{
n

∑
l=1

{
k

∑
i=k−d

k

∑
j=i

h̃T (x̃( j))Rl
1h̃(x̃( j))

−
k−1

∑
i=k−d

k−1

∑
j=i

h̃T (x̃( j))Rl
1h̃(x̃( j))

}}

≤ E

{
n

∑
l=1

{
dh̃T (x̃(k))Rl

1h̃(x̃(k))

−
k−1

∑
j=k−d

h̃T (x̃( j))Rl
1h̃(x̃( j))

}}

≤ E

{
n

∑
l=1

{
dh̃T (x̃(k))Rl

1h̃(x̃(k))

−

[
k−1

∑
j=k−d

h̃(x̃( j))

]T

Rl
1

[
k−1

∑
j=k−d

h̃(x̃( j))

]





≤ E

{
n

∑
l=1

{
ζT (k)(deT

13Rl
1e13

−e14Rl
1e14)

}
ζ(k)

}

≤ E

{
n

∑
l=1

{
ζT (k)Πl

3ζ(k)
}}

≤ E
{

ζT (k)Π̃3ζ(k)
}

(26)

Let us consider

E{∆V4(k)}= E

{
n

∑
l=1

{
τ2

mηT (k)Sl
1η(k)

−τm

k−1

∑
j=k−τm

ηT (k)Sl
1η(k)

}}
(27)

Now, we are in a position to apply Lemma 2, to the
last three negative terms of (27). Then, on one hand,

we have

−τm

k−1

∑
j=k−τm

η(k)S1η(k)≤−[x̃(k)− x̃(k− τm)]
T S1

× [x̃(k)− x̃(k− τm)]−3
(

τm +1
τm −1

)

[
x̃(k)+ x̃(k− τm)−

2
τm +1

k

∑
j=k−τm

x̃( j)

]T

×S1

[
x̃(k)+ x̃(k− τm)−

2
τm +1

k

∑
j=k−τm

x̃( j)

]

=−ζT (k)ΘT
4




S1 0

0 3
(τm +1)
τm −1

S1




T

Θ4ζ(k)

(28)

Therefore,

E{∆V4(k)} ≤ E

{
n

∑
l=1

{
ζT (k)ΘT

3 (τ
2
mSl

1)Θ3ζ(k)−ζT (k)

×ΘT
4




Sl
1 0

0 3
(τm +1)
τm −1

Sl
1




T

Θ4ζ(k)







= E

{
n

∑
l=1

{
ζT (k) Πl

4ζ(k)
}}

≤ E
{

ζT (k)Π̃4ζ(k)
}

(29)

Calculating the expectation of ∆V5(k) gives,

E{∆V5(k)}= E

{
n

∑
l=1

{
τ2

12ηT (k)Sl
2η(k)

−τ12

k−τm−1

∑
j=k−τM

ηT (k)Sl
2η(k)

}}

= E

{
n

∑
l=1

{
τ2

12ηT (k)Sl
2η(k)

−τ12

k−τ(k)−1

∑
j=k−τM

ηT (k)Sl
2η(k)

−τ12

k−τm−1

∑
j=k−τ(k)

ηT (k)Sl
2η(k)

}}

(30)
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Further, it follows,

−τ12

k−τ(k)−1

∑
j=k−τM

ηT (k)S2η(k)×S2 [x̃(k− τ(k))

+x̃(k− τM))− 2
τM − τ(k)+1

k−τ(k)

∑
j=k−τM

x̃( j)

]}

≤− τ12

τM − τ(k)
{
[x̃(k− τ(k))− x̃(k− τM))]T

×S2[x̃(k− τ(k))− x̃(k− τM))]− 3τ12

τM − τ(k)[
x̃(k− τ(k))+ x̃(k− τM))− 2

τM − τ(k)+1
k−τ(k)

∑
j=k−τM

x̃( j)

]T

S2 [x̃(k− τ(k))+ x̃(k− τM)

− 2
τM − τ(k)+1

k−τ(k)

∑
j=k−τM

x̃( j)

]}
(31)

In a similar way,

−τ12

k−τm−1

∑
j=k−τ(k)

ηT (k)S2η(k)

≤− τ12

τ(k)− τm

{
[x̃(k− τm)− x̃(k− τ(k))]T

×S2[x̃(k− τm)− x̃(k− τ(k))]− 3τ12

τ(k)− τm

×
[

x̃(k− τm)+ x̃(k− τ(k))− 2
τ(k)− τm +1

×
k−τm

∑
j=k−τ(k)

x̃( j)

]T

S2 [x̃(k− τm)+ x̃(k− τ(k))

− 2
τ(k)− τm +1

k−τm

∑
j=k−τ(k)

x̃( j)

]}
(32)

Under the conditions (19) and applying Lemma
3 to (31)-(32), it yields

n

∑
l=1

{
−τ12

k−τ(k)−1

∑
j=k−τM

ηT (k)Sl
2η(k)

−τ12

k−τm−1

∑
j=k−τ(k)

ηT (k)Sl
2η(k)

}
≤

n

∑
l=1

{
−ζT (k)ΘT

5 Γl
1Θ5ζ(k)

}

(33)

Therefore, the expectation of ∆V5(k) becomes,

E(∆V5(k))≤
n

∑
l=1

{
ζT (k)ΘT

3 (τ
2
12Sl

2)Θ3ζ(k)

−ζT (k)ΘT
5 Γl

1Θ5ζ(k)
}

=
n

∑
l=1

{
ζT (k)Πl

5ζ(k)
}

≤ E
{

ζT (k)Π̃5ζ(k)
}

(34)

Calculating ∆V6(k), we get

E{∆V6(k)}= E

{
n

∑
l=1

{
τ2

mx̃T (k)Zl
1x̃(k)

−τm

k

∑
j=k−τm+1

x̃T ( j−1)Zl
1x̃( j−1)

}}

= E

{
n

∑
l=1

{
τ2

mx̃T (k)Zl
1x̃(k)

−τm

k−1

∑
j=k−τm

x̃T ( j)Zl
1x̃( j)

}}
(35)

By Lemma 1, we get

−τm

k−1

∑
j=k−τm

x̃T ( j)Z1x̃( j)

≤−

[
k−1

∑
j=k−τm

x̃( j)

]T

Z1

[
−

k−1

∑
j=k−τm

x̃( j)

]

− 3
τ2

m −1

[
2

k−1

∑
i=k−τm+1

i−1

∑
j=k−τm

x̃T ( j)− (τm −1)

(
k−1

∑
j=k−τm

x̃T ( j)

)]T

Z1

[
2

k−1

∑
i=k−τm+1

i−1

∑
j=k−τm

x̃T ( j)

−(τm −1)

(
k−1

∑
j=k−τm

x̃T ( j)

)]
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Further, it follows,

−τ12

k−τ(k)−1

∑
j=k−τM

ηT (k)S2η(k)×S2 [x̃(k− τ(k))

+x̃(k− τM))− 2
τM − τ(k)+1

k−τ(k)

∑
j=k−τM

x̃( j)

]}

≤− τ12

τM − τ(k)
{
[x̃(k− τ(k))− x̃(k− τM))]T

×S2[x̃(k− τ(k))− x̃(k− τM))]− 3τ12

τM − τ(k)[
x̃(k− τ(k))+ x̃(k− τM))− 2

τM − τ(k)+1
k−τ(k)

∑
j=k−τM

x̃( j)

]T

S2 [x̃(k− τ(k))+ x̃(k− τM)

− 2
τM − τ(k)+1

k−τ(k)

∑
j=k−τM

x̃( j)

]}
(31)

In a similar way,

−τ12

k−τm−1

∑
j=k−τ(k)

ηT (k)S2η(k)

≤− τ12

τ(k)− τm

{
[x̃(k− τm)− x̃(k− τ(k))]T

×S2[x̃(k− τm)− x̃(k− τ(k))]− 3τ12

τ(k)− τm

×
[

x̃(k− τm)+ x̃(k− τ(k))− 2
τ(k)− τm +1

×
k−τm

∑
j=k−τ(k)

x̃( j)

]T

S2 [x̃(k− τm)+ x̃(k− τ(k))

− 2
τ(k)− τm +1

k−τm

∑
j=k−τ(k)

x̃( j)

]}
(32)

Under the conditions (19) and applying Lemma
3 to (31)-(32), it yields

n

∑
l=1

{
−τ12

k−τ(k)−1

∑
j=k−τM

ηT (k)Sl
2η(k)

−τ12

k−τm−1

∑
j=k−τ(k)

ηT (k)Sl
2η(k)

}
≤

n

∑
l=1

{
−ζT (k)ΘT

5 Γl
1Θ5ζ(k)

}

(33)

Therefore, the expectation of ∆V5(k) becomes,

E(∆V5(k))≤
n

∑
l=1

{
ζT (k)ΘT

3 (τ
2
12Sl

2)Θ3ζ(k)

−ζT (k)ΘT
5 Γl

1Θ5ζ(k)
}

=
n

∑
l=1

{
ζT (k)Πl

5ζ(k)
}

≤ E
{

ζT (k)Π̃5ζ(k)
}

(34)

Calculating ∆V6(k), we get

E{∆V6(k)}= E

{
n

∑
l=1

{
τ2

mx̃T (k)Zl
1x̃(k)

−τm

k

∑
j=k−τm+1

x̃T ( j−1)Zl
1x̃( j−1)

}}

= E

{
n

∑
l=1

{
τ2

mx̃T (k)Zl
1x̃(k)

−τm

k−1

∑
j=k−τm

x̃T ( j)Zl
1x̃( j)

}}
(35)

By Lemma 1, we get

−τm

k−1

∑
j=k−τm

x̃T ( j)Z1x̃( j)

≤−

[
k−1

∑
j=k−τm

x̃( j)

]T

Z1

[
−

k−1

∑
j=k−τm

x̃( j)

]

− 3
τ2

m −1

[
2

k−1

∑
i=k−τm+1

i−1

∑
j=k−τm

x̃T ( j)− (τm −1)

(
k−1

∑
j=k−τm

x̃T ( j)

)]T

Z1

[
2

k−1

∑
i=k−τm+1

i−1

∑
j=k−τm

x̃T ( j)

−(τm −1)

(
k−1

∑
j=k−τm

x̃T ( j)

)]
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≤−ζT (k)
{
[(τm +1)e5 − e1]

T Z1[(τm +1)e5

−e1]−
3

τ2
m −1

[2e9 − (τm −1)((τm +1)e5 − e1]
T

Z1[2e9 − (τm −1)((τm +1)e5 − e1]ζ(k)} (36)

Also, we have

E{∆V6(k)} ≤
n

∑
l=1

{
ζ(k)

{
[τ2

meT
1 Zl

1e1 − [(τm +1)e5

−e1]
T Zl

1[(τm +1)e5 − e1]−
3

τ2
m −1

[2e9 − (τm −1)((τm +1)e5 − e1]
T Zl

1

×[2e9 − (τm −1)((τm +1)e5 − e1]ζ(k)}}

=
n

∑
l=1

{
ζT (k)Πl

6ζ(k)
}

≤ E
{

ζT (k)Π̃6ζ(k)
}

(37)

Calculating ∆V7(k), we get

E{∆V7(k)}= E

{
n

∑
l=1

{
τm(τm +1)

2
ηT (k)Z2η(k)

−
0

∑
s=−τm+1

k

∑
u=k+s

ηT (u)Z2η(u)

}}

(38)

From Lemma 2, we have

−
0

∑
s=−τm+1

k

∑
u=k+s

ηT (u)Z2η(u)

≤−2(τm +1)
τm

ψT
3 Z2ψ3 −

4(τm +1)(τm +2)
τm(τm −1)[

x̃(k)+
2

τm +1

k

∑
s=k−τm

x̃(s)− 6
(τm +1)(τm +2)

0

∑
s=−τm

k

∑
u=k+s

x̃T (u)Z2x̃(u)

]T

Z2

[
x̃(k)+

2
τm +1

k

∑
s=k−τm

x̃(s)

− 6
(τm +1)(τm +2)

0

∑
s=−τm

k

∑
u=k+s

x̃T (u)Z2x̃(u)

]

=−2(τm +1)
τm

ψT
3 Z2ψ3 −

4(τm +1)(τm +2)
τm(τm −1)

ψT
4 Z2ψ4

= ζT (k)
(
−2(τm +1)

τm
ΘT

71Zl
2Θ71

−4(τm +1)(τm +2)
τm(τm −1)

ΘT
72Zl

2Θ72

)
ζ(k)

(39)

where

ψ3 = x̃(k)− 1
τm +1

k

∑
u=k+s

x̃(u),

ψ4 = x̃(k)+
(

2
τm +1

− 6
(τm +1)(τm +2)

)

k

∑
s=k−τm

x̃(s)− 6
(τm +1)(τm +2)

0

∑
s=−τm+1

k

∑
u=k+s

x̃(u).

Hence,

E{∆V7(k)} ≤ E

{
n

∑
l=1

{
ζT (k)Πl

7ζ(k)
}}

≤ E
{

ζT (k)Π̃7ζ(k)
}
. (40)

From Assumption 1, Ya = diag{yai} > 0 for a =
1,2,3 and i = 1, . . .m, the following inequality
holds:

0 ≤−2
m

∑
i=1

y1i( f̃ (x̃i(k))−δ−i x̃i(k))( f̃ (x̃i(k))

−δ+i x̃i(k))−2
m

∑
i=1

y2i(g̃τk(x̃i(k))−β−
i (x̃τk))

× (g̃τk(x̃i(k))−β+
i (x̃τk))−2

m

∑
i=1

y3i(h̃(x̃i(k))

− γ−i x̃i(k))(h̃(x̃i(k))− γ+i x̃i(k))

� ζT (k)ϒζ(k). (41)

Now, we take the bounded disturbance along with
triggering condition (8), then

∆1 � ϖT (k)ϖ(k)−θ ≤ 0,∆2 � vT (k)v(k)− v̄ ≤ 0,
(42)
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Then, it follows from (21)-(42), and adding all
the inequalities along with the Assumption 1, we
get

E{∆V (x̃(k))} ≤ E
{

ζT (k)(Π(τ(k))+Ω)ζ(k)
}
,

� E
{

ζT (k)(Ξ(τ(k)))ζ(k)
}
, (43)

where Ξ(τ(k)) = Π(τ(k))+Ω.
Moreover, if for

Φ(τ(k))�




Ξ(τ(k)) Ξ̂2 Ξ̂3 Ξ̂4

⋆ Ξ̂5 0 0
⋆ ⋆ Ξ̂6 0
⋆ ⋆ ⋆ Ξ̂7


 , (44)

where Ξ̂2 � êr, Ξ̂3 � −PK, Ξ̂4 � −PKF, Ξ̂5 �
−P, Ξ̂6 � −ε1I, Ξ̂7 � −ε2I, we have, ∆V (x̃(k)) ≤
Φ(τ(k)). Then, obviously if, Φ(τ(k)) < 0 and for
ζ(k) ̸= 0, we get ∆V x̃(k) < 0, which indicates that
the error system is asymptotically mean square sta-
ble when w(k) = 0.
Next, for all non-zero w(k), we get,

∆V (x̃(k))+ z̃T (k)z̃(k)− γ2wT (k)w(k)

≤ ζT (k)Φ(τ(k))ζ(k)+ x̃T (k)LT
i Lix̃(k)

− γ2wT (k)w(k)

≤ ζ1(k)Φ̃(τ(k))ζ1(k) (45)

where ζT
1 (k) � [ζT (k) wT (k)] where Φ(τ(k)) is

given in LMI (44).
Hence, it follows that, ∆V (x̃(k)) + z̃T (k)z̃(k) −
γ2wT (k)w(k)< 0, that is

Σ̃(τ(k))�




Φ(τ(k)) 0 êrPi

⋆ −γ2I DT
i Pi

⋆ ⋆ −Pi


 .

Now, the index is established with the H∞ perfor-
mance:

J (s)� E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2

}
(46)

By zero initial condition,

J (s)� E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2 +∆V (k)

−E{V (s+1)}}

≤ E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2 +∆V (k)

}

≤ E
s

∑
k=0

{ζT
1 (k)Φ̃(τ(k))}< 0. (47)

Letting s → ∞, we obtain,

∞

∑
k=0

E
{
||z̃(k)||2

}
≤ γ2

∞

∑
k=0

||w(k)||2

This proves that the error system is (14) is asymp-
totically stable.

Remark 2. Due to the existence of the time-varying
term ∑ j∈S γl j(h)Pj, it is observed that (19) is not an
LMI and is therefore hard to solve. Also in [36], the
transition rate γl j(h) is bounded and γl j

− ≤ γl j(h)≤
γl j

+, where γ−l j and γ+l j are constants. Therefore,
γl j(h) is given by [36, 37].

γl j(h) =
K

∑
k=1

φ̂kγl j,k,
K

∑
k=1

φ̂k = 1, φ̂k ≥ 0, (48)

and

γl j,k =




γ−l j +(k−1)
γ−i j−γ+l j
K −1 , i ̸= j, j ∈ S

γ+l j − (k−1)
γ−i j−γ+l j
K −1 , i = j, j ∈ S

,

(49)

Remark 3. Sufficient condition given by Theorem
1 provides the error dynamics (14) to achieve the
estimation performance. To be specific, the guaran-
teed feasibility of the constraints is achieved by the
values of the triggering thresholds θl .

Now, we will determine parameters of filter
(13) based on the LMIs established in Theorem 1.

Theorem 2. For given integers 0 ≤ τm ≤
τM, (14) is asymptotically stable for τm ≤
τM, if there exists matrices P ∈ R3n×3n,Q1 ∈
Rn×n,Q2 ∈ Rn×n,R1 ∈ Rn×n,S1 ∈ Rn×n,S2 ∈
Rn×n,Z1 ∈ Rn×n,Z2 ∈ Rn×n > 0, diagonal matri-
ces Ya ∈ R�×� > 0,(a = 1,2,3), positive scalars
ε1,ε2 and any matrices Y11,Y12,Y21,Y22 ∈Rn×n with
the event triggering condition (8) and the trigger-
ing thresholds θl,(l = 1,2, . . . ,n) which satisfies the
LMIs,

Λ(τ(k))� Σ̃(τ(k))+Sym{ϒ2ϒ3}< 0, Γ > 0,
(50)

with ϒ2 � X(Ãle1 + Adle11 + BlMe12 + Cle14 +
De17−Y (e15+Fe16),ϒ3 � e1+e15 then, K =X−1Y
is the gain estimator.
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Then, it follows from (21)-(42), and adding all
the inequalities along with the Assumption 1, we
get

E{∆V (x̃(k))} ≤ E
{

ζT (k)(Π(τ(k))+Ω)ζ(k)
}
,

� E
{

ζT (k)(Ξ(τ(k)))ζ(k)
}
, (43)

where Ξ(τ(k)) = Π(τ(k))+Ω.
Moreover, if for

Φ(τ(k))�




Ξ(τ(k)) Ξ̂2 Ξ̂3 Ξ̂4

⋆ Ξ̂5 0 0
⋆ ⋆ Ξ̂6 0
⋆ ⋆ ⋆ Ξ̂7


 , (44)

where Ξ̂2 � êr, Ξ̂3 � −PK, Ξ̂4 � −PKF, Ξ̂5 �
−P, Ξ̂6 � −ε1I, Ξ̂7 � −ε2I, we have, ∆V (x̃(k)) ≤
Φ(τ(k)). Then, obviously if, Φ(τ(k)) < 0 and for
ζ(k) ̸= 0, we get ∆V x̃(k) < 0, which indicates that
the error system is asymptotically mean square sta-
ble when w(k) = 0.
Next, for all non-zero w(k), we get,

∆V (x̃(k))+ z̃T (k)z̃(k)− γ2wT (k)w(k)

≤ ζT (k)Φ(τ(k))ζ(k)+ x̃T (k)LT
i Lix̃(k)

− γ2wT (k)w(k)

≤ ζ1(k)Φ̃(τ(k))ζ1(k) (45)

where ζT
1 (k) � [ζT (k) wT (k)] where Φ(τ(k)) is

given in LMI (44).
Hence, it follows that, ∆V (x̃(k)) + z̃T (k)z̃(k) −
γ2wT (k)w(k)< 0, that is

Σ̃(τ(k))�




Φ(τ(k)) 0 êrPi

⋆ −γ2I DT
i Pi

⋆ ⋆ −Pi


 .

Now, the index is established with the H∞ perfor-
mance:

J (s)� E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2

}
(46)

By zero initial condition,

J (s)� E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2 +∆V (k)

−E{V (s+1)}}

≤ E
s

∑
k=0

{
||z̃(k)||2 − γ2||w(k)||2 +∆V (k)

}

≤ E
s

∑
k=0

{ζT
1 (k)Φ̃(τ(k))}< 0. (47)

Letting s → ∞, we obtain,

∞

∑
k=0

E
{
||z̃(k)||2

}
≤ γ2

∞

∑
k=0

||w(k)||2

This proves that the error system is (14) is asymp-
totically stable.

Remark 2. Due to the existence of the time-varying
term ∑ j∈S γl j(h)Pj, it is observed that (19) is not an
LMI and is therefore hard to solve. Also in [36], the
transition rate γl j(h) is bounded and γl j

− ≤ γl j(h)≤
γl j

+, where γ−l j and γ+l j are constants. Therefore,
γl j(h) is given by [36, 37].

γl j(h) =
K

∑
k=1

φ̂kγl j,k,
K

∑
k=1

φ̂k = 1, φ̂k ≥ 0, (48)

and

γl j,k =




γ−l j +(k−1)
γ−i j−γ+l j
K −1 , i ̸= j, j ∈ S

γ+l j − (k−1)
γ−i j−γ+l j
K −1 , i = j, j ∈ S

,

(49)

Remark 3. Sufficient condition given by Theorem
1 provides the error dynamics (14) to achieve the
estimation performance. To be specific, the guaran-
teed feasibility of the constraints is achieved by the
values of the triggering thresholds θl .

Now, we will determine parameters of filter
(13) based on the LMIs established in Theorem 1.

Theorem 2. For given integers 0 ≤ τm ≤
τM, (14) is asymptotically stable for τm ≤
τM, if there exists matrices P ∈ R3n×3n,Q1 ∈
Rn×n,Q2 ∈ Rn×n,R1 ∈ Rn×n,S1 ∈ Rn×n,S2 ∈
Rn×n,Z1 ∈ Rn×n,Z2 ∈ Rn×n > 0, diagonal matri-
ces Ya ∈ R�×� > 0,(a = 1,2,3), positive scalars
ε1,ε2 and any matrices Y11,Y12,Y21,Y22 ∈Rn×n with
the event triggering condition (8) and the trigger-
ing thresholds θl,(l = 1,2, . . . ,n) which satisfies the
LMIs,

Λ(τ(k))� Σ̃(τ(k))+Sym{ϒ2ϒ3}< 0, Γ > 0,
(50)

with ϒ2 � X(Ãle1 + Adle11 + BlMe12 + Cle14 +
De17−Y (e15+Fe16),ϒ3 � e1+e15 then, K =X−1Y
is the gain estimator.
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Proof: By applying the zero inequality, gain matrix
K designing is done by the parameters given in The-
orem 1, for any matrix X of appropriate dimension:

0 =2(x̃(k)+η(k))X [Ãl x̃(k)+Adl f̃ (x̃(k))

+BlMg̃τk(x̃(k))+Cl

k−1

∑
s=k−d

h̃(x̃(s))−Kϖ(k)

−KFv(k)+Dw(k)− x̃(k+1)] (51)

�ζ1(k)Sym{ϒ2ϒ3}ζ1(k) (52)

Combining all the inequalities, from (24) to (40),

∆V (k)≤ ζ1(k)Λ(τ(k))ζ1(k). (53)

Obviously, if Λ(τ(k))< 0 and ζ1 ̸= 0, then ∆V (k)<
0, that is error system is asymptotically stable with
the estimator gain K.

4 Numerical Simulation

Two numerical simulations are provided to il-
lustrate the usefulness of the obtained theoretical
results for a class of discrete-time NNs.

Example 1. The system parameters of the semi-
Markovian NNs are set with:

A1 =

[
−1.32 −0.13
−0.96 −1.0

]
,

A2 =

[
−1.28 −0.35
−0.59 −0.8

]
,

Ad1 =

[
−1.02 −0.06
0.058 −2.0

]
,

Ad2 =

[
−0.24 −0.03
−0.07 −0.6

]
,

B1 =

[
−0.12 −0.09
−1.09 −0.8

]
,

B2 =

[
−0.36 −0.36
−0.95 −0.7

]
,

C1 =

[
−0.26 −0.05
−0.09 −0.8

]
,

C2 =

[
−0.29 −0.12
−0.08 −0.9

]
,

J(k) =
[

0.1cos(k/2)
0.05sin(k/2)

]
,

D1 =

[
0.05
0.04

]
,

D2 =

[
0.04
0.03

]
,

L =

[
0.6 0
0 0.6

]
,

τm = 4,τ(k) = 6,τM = 15

The neuron activation functions are assumed to be

f (x(s)) =
[

tanh
(

4x1(s)
10

)
tanh

(
5x2(s)

10

) ]T

g(x(s)) =
[

tanh
(

3x1(s)
10

)
tanh

(
4x2(s)

10

) ]T

h(x(s)) =
[

tanh
(
−5x1(s)

10

)
tanh

(
3x2(s)

10

) ]T

.

from which it is easy to verify that δ1 =
β1 = γ1 = 0,δ2 = diag{−0.2,−0.25},β2 =
diag{−0.15,−0.2},
γ2 = diag{0.25,−0.15} The output measurement
of the NN (7) is modeled with:

E =

[
2.2 0.5
0.3 1.2

]
,F =

[
0.4
0.3

]

The transition rate matrix is chosen as 0.1 ≤
θ12 ≤ 2.0, 0.8 ≤ θ21 ≤ 1.7. From equations (48)
and (49), we have θ12,1 = 0.1,θ12,2 = 2.0,θ21,1 =
0.8,θ21,2 = 1.7. Also v(k) = v̄sin(k) with v̄ = 1.5.
The individual triggering thresholds is taken into
consideration in the event-triggering transmission
protocol and the value of threshold θ correspond-
ing to the output measurement is obtained as Θ =
142.4114. The asymptotic stability is achieved by
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solving the LMIs in Theorem 2, to obtain the fil-
ter gains by using the semi-Markovian generalized
NNs for the designed filters as,

K1 =

[
−0.2547 0.0031
−0.1690 −1.5868

]
,

K2 =

[
−0.3097 −0.0800
−0.0823 −1.0630

]
,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time k

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x(
k)

Figure 1. State responses of the system (14)

From the Figure 1, the state responses of the
considered NN converge to zero and hence can
be concluded that the proposed estimation done
via event-triggering performs better than the time-
triggered scheme which also reduces the triggering
frequency.

Example 2. The system parameters of the semi-
Markovian neural networks are set with the follow-
ing parameters:

A1 =




−6.2 0 0
0 −2.5 0
0 0 0.45


 ,

A2 =




6.4 0 0.1
0.2 3.2 2.1
2.0 3.2 4.1


 ,

Ad1 =




−1.02 0.06 0.01
0.058 −2 0.5
0.07 0.3 −0.6


 ,

Ad2 =




−0.24 −0.03 1.2
−0.07 −0.6 0.8
−2.3 2.4 2.5


 ,

B1 =




−0.8 0.90.1
0.6 1.5 0.3
0.2 0.4 0.5


 ,

B2 =




−0.7 0.6 0
−0.58 0.7 0

070 0.4


 ,

C1 =




−0.02 0.09 0
−0.03 0.09 0.01
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
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


−0.03 0.07 0.03
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

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
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
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
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 ,
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The activation functions in neuron are the same
as in Example 1, with the same kind of the tran-
sition matrix, then the event triggering threshold
θ1 = 429.6158.
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solving the LMIs in Theorem 2, to obtain the fil-
ter gains by using the semi-Markovian generalized
NNs for the designed filters as,

K1 =

[
−0.2547 0.0031
−0.1690 −1.5868

]
,

K2 =

[
−0.3097 −0.0800
−0.0823 −1.0630

]
,
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Figure 1. State responses of the system (14)

From the Figure 1, the state responses of the
considered NN converge to zero and hence can
be concluded that the proposed estimation done
via event-triggering performs better than the time-
triggered scheme which also reduces the triggering
frequency.

Example 2. The system parameters of the semi-
Markovian neural networks are set with the follow-
ing parameters:

A1 =




−6.2 0 0
0 −2.5 0
0 0 0.45


 ,

A2 =




6.4 0 0.1
0.2 3.2 2.1
2.0 3.2 4.1


 ,

Ad1 =




−1.02 0.06 0.01
0.058 −2 0.5
0.07 0.3 −0.6


 ,

Ad2 =




−0.24 −0.03 1.2
−0.07 −0.6 0.8
−2.3 2.4 2.5


 ,

B1 =




−0.8 0.90.1
0.6 1.5 0.3
0.2 0.4 0.5


 ,

B2 =




−0.7 0.6 0
−0.58 0.7 0

070 0.4


 ,

C1 =




−0.02 0.09 0
−0.03 0.09 0.01

0.4 −0.2 0.01


 ,

C2 =




−0.03 0.07 0.03
0.03 0.07 0.01
0.01 0.2 0.4




D1 =




0.05
0.04
0.06


 ,

D2 =




0.04
0.03
0.02


 ,

L =




0.5 0 0
0 0.5 0
0 0 0.5


 ,

τm = 6,τ(k) = 8,τM = 15

The activation functions in neuron are the same
as in Example 1, with the same kind of the tran-
sition matrix, then the event triggering threshold
θ1 = 429.6158.
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Figure 2. State responses of the system (14)

Through MATLAB simulation, the LMI (14) is
feasible with the gain matrices given by

K1 =




−1.9967 −0.7646 0.3471
0.0527 −4.6057 −2.4581
1.3421 −3.2971 0.7651


 ,

K2 =




−1.4446 −0.4484 −0.2345
−0.0447 −3.3331 −2.3485
0.0325 −2.3485 −1.7835


 .

Figure 2. depicts the convergence dynamics of the
system of (14).

5 Conclusion

In this article, investigation of state estimation
via H∞ approach is carried over with mixed time
delays for discrete-time stochastic NNs under the
event-triggered communication scheme. The trans-
mission of the measurement component is done
only when the corresponding triggering condition
is satisfied. New summation inequalities are estab-
lished which extends the discrete Jensen’s inequal-
ity effectively. Asymptotic stability analysis of de-
layed discrete-time NNs with the H∞ performance
γ > 0 is established as an application of the sum-
mation inequality. Two simulation results are pre-
sented for illustration of the proposed methodolo-
gies. In future research, we plan to expand the pro-
posed methodology to continuous-time stochastic
systems.
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