PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of cooling rate on microstructure and microhardness of hypereutectic Al–Ni alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High solidification cooling rates during unsteady-state conditions of solidification of Al-based alloys can induce different microstructural length scales or metastable phases, leading to improved properties. The present study aims to characterize the microstructural arrangement of the hypereutectic Al–8 wt%Ni alloy, unidirectionally solidified in unsteady-state heat flow conditions, examining the influence of the cooling rate in the development of the Al–Al3Ni eutectic and the primary phase. A columnar-to-equiaxed macrostructural transition is shown to occur at a solidification cooling rate [...] of about 4.8 °C/s, with different microstructures associated with each morphological zone. The observation of microstructures of hypoeutectic, eutectic and hypereutectic Al–Ni alloys, has permitted an asymmetric coupled zone diagram to be proposed. The microstructural interphase spacings of the Al–8 wt%Ni alloy are experimentally determined and correlated to [...], and the Vickers microhardness (HV) is shown to decrease with the increase in such spacings. The higher experimental HV profile of the examined hypereutectic alloy as compared to that of the eutectic Al–Ni alloy is attributed to the formation of a supersaturated solid solution of Ni in α-Al.
Rocznik
Strony
230--238
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
  • Department of Manufacturing and Materials Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-860, Brazil
autor
  • Department of Manufacturing and Materials Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-860, Brazil
autor
  • Department of Manufacturing and Materials Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-860, Brazil
autor
  • Department of Manufacturing and Materials Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-860, Brazil
Bibliografia
  • [1] Poliarus O, Morgiel J, Umanskyi O, Pomorska M, Bodrowski P, Szczerba MJ, Kostenko O. Microstructure and wear of thermal sprayed composite NiAl-based coatings. Archiv Civ Mech Eng. 2019;19:1095–103.
  • [2] Gonzalez G, Lara-Rodriguez GA, Sandoval-Jiménez A, Saikaly W, Charai A. The influence of cooling rate on the microstructure of an Al–Ni hypereutectic alloy. Mater Charact. 2008;59:1607–12.
  • [3] Liu F, Zhu X, Ki S. Effects of Ni on the microstructure, hot tear and mechanical properties of Al–ZnMg–Cu alloys under as-cast condition. J Alloys Compd. 2020;821:153458.
  • [4] Kakitani R, Reyes RV, Garcia A, Spinelli JE, Cheung N. Relation-ship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al–Ni eutectic alloy. J Alloys Compd. 2018;733:59–68.
  • [5] Fan Y, Makhlouf MM. The effect of introducing the Al-Ni eutectic composition into Al-Zr-V alloys on microstructure and tensile properties. Mater Sci Eng, A. 2016;654:228–35.
  • [6] Akopyan TK, Belov NA, Naumova EA, Letyagin NV. New in situ Al matrix composites based on Al–Ni–La eutectic. Mater Lett. 2019;245:110–3.
  • [7] Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C. New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng, A. 2018;709:46–54.
  • [8] Fan Y, Huang K, Makhlouf MM. Precipitation strengthening in Al–Ni–Mn alloys. Metall Mater Trans A. 2015;46:5830–41.
  • [9] Wang Q, Wang ZY, Liu T, Wang CJ, Zhang C, He JC. Alignment of primary Al3Ni phases in hypereutectic Al–Ni alloys with vari-ous compositions under high magnetic fields. Sci China Ser E. 2009;52:857–63.
  • [10] Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE. Tensile properties and related microstructural aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater Sci Eng, A. 2017;685:235–43.
  • [11] Feng H, Yang Z, Bai Y, Zhang L, Liu Y. Effect of Cr content and cooling rate on the primary phase of Al–2.5Mn alloy. Int J Miner Metall Mater. 2019;26:1551–8.
  • [12] Ourfali MF, Todd I, Jones H. Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy. Metall Mater Trans A. 2005;36:1368–72.
  • [13] Zuo KS, Zhang HT, Han X, Jia HL, Qin K, Cui JZ. Effects of Cr and cooling rate on segregation and refinement of primary Si in Al–20 wt%Si alloy. Int Metalcast. 2014;8:55–62.
  • [14] Kakitani R, Reyes RV, Garcia A, Cheung N, Spinelli JE. Effects of melt superheating on the microstructure and tensile properties of a ternary Al–15 Wt Pct Si–1.5 Wt Pct Mg alloy. Metall Mater Trans A. 2019;50:1308–22.
  • [15] Dias M, Oliveira R, Kakitani R, Cheung N, Henein H, Spinelli JE, Garcia A. Effects of solidification thermal parameters and Bi doping on silicon size, morphology and mechanical properties of Al–15wt% 3.2wt% Bi and Al–18wt% 3.2wt% Bi alloys. J Mater Res Technol. 2020;9:3460–70.
  • [16] Lekakh SN, O’Malley R, Emmendorfer M, Hrebec B. Control of columnar to equiaxed transition in solidification macrostructure of austenitic stainless steel castings. ISIJ Int. 2017;57:824–32.
  • [17] Leriche N, Combeau H, Gandin C-A, Založnik M. Modelling of columnar-to-equiaxed and equiaxed-to-columnar transi-tions in ingots using a multiphase model. IOP Conf Ser-Mat Sc. 2015;84:012087.
  • [18] Svidró P, Diószegi A. Determination of the columnar to equiaxed transition in hypoeutectic lamellar cast iron. ISIJ Int. 2014;54:460–5.
  • [19] Wang H, Zhao P, Chen J, Li M, Yang Z, Wu C. Original position statistic distribution analysis study of low alloy steel continuous casting billet. Sci China Ser E. 2005;48:104–15.
  • [20] Bhaumik SK, Bhaskaran TA, Rangaraju R, Venkataswamy MA, Parameswara MA, Krishnan RV. Failure of turbine rotor blisk of an aircraft engine. Eng Fail Anal. 2002;9:287–301.
  • [21] Siqueira CA, Cheung N, Garcia A. Solidification thermal parameters affecting the columnar-to-equiaxed transition. Metall Mater Trans A. 2002;33:2107–18.
  • [22] Canté MV, Cruz KS, Spinelli JE, Cheung N, Garcia A. Experimental analysis of the columnar-to-equiaxed transition in directionally solidified Al–Ni and Al–Sn alloys. Mater Lett. 2007;61:2135–8.
  • [23] Okamoto H. Al–Ni (Aluminum–Nickel). J Phase Equilib. 1993;14:257–9.
  • [24] Glazoff MV, Khvan A, Zolotorevsky VS, Belov NA, Dinsdale A. Casting aluminum alloys: their physical and mechanical metallurgy. Oxford: Butterworth-Heinemann; 2018.
  • [25] Canté MV, Spinelli JE, Cheung N, Garcia A. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al–Ni alloys. Met Mater Int. 2010;16:39–49.
  • [26] Kaya H, Böyük U, Çadırlı E, Maraşlı N. Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy. Mater Des. 2012;34:707–12.
  • [27] Zhuang YX, Zhang XM, Zhu LH, Hu ZQ. Eutectic spacing and faults of directionally solidified Al–Al3Ni eutectic. Sci Technol Adv Mater. 2001;2:37–9.
  • [28] El-Mahallawy NA. Effect of composition on the structure of directionally solidified Al–Ni and Al–Ni–Cu composites. Fibre Sci Technol. 1983;19:27–36.
  • [29] Yamagat H, Kasprzak W, Aniolek M, Kurita H, Sokolowski JH. The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks. J Mater Process Technol. 2008;203:333–41.
  • [30] Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W. The coupled zone of rapidly solidified Al–Si alloys in laser treatment. Acta Metall Mater. 1992;40:1637–44.
  • [31] Silva CAP, Kakitani R, Canté MV, Brito C, Garcia A, Spinelli JE, Cheung N. Microstructure, phase morphology, eutectic coupled zone and hardness of Al–Co alloys. Mater Charact. 2020;169:110617.
  • [32] Li C, Yang H, Ren Z, Ren W, Wu Y. Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al–Cu hypereutectic alloy. J Alloys Compd. 2010;505:108–12.
  • [33] Li SM, Quan QR, Li XL, Fu HZ. Increasing the growth velocity of coupled eutectics in directional solidification of off-eutectic alloys. J Cryst Growth. 2011;314:279–84.
  • [34] Jiang A, Wang X. Dendritic and seaweed growth of proeutectic scandium tri-aluminide in hypereutectic Al–Sc undercooled melt. Acta Mater. 2020;200:56–65.
  • [35] Stefanescu DM. Science and engineering of casting solidification. 2nd ed. New York: Springer; 2009.
  • [36] Li Y. Bulk metallic glasses: eutectic coupled zone and amorphous formation. JOM. 2005;57:60–3.
  • [37] Kurz W, Fisher DJ. Dendrite growth in eutectic alloys: the coupled zone. Int Met Rev. 1979;24:177–204.
  • [38] Garcia A, Prates M. Mathematical model for the unidirectional solidification of metals: I. cooled molds. Metall Trans B. 1978;9:449–57.
  • [39] Spinelli JE, Cheung N, Garcia A. On array models theoretical predictions versus measurements for the growth of cells and dendrites in the transient solidification of binary alloys. Philos Mag. 2011;91:1705–23.
  • [40] Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc. 1951;64:747–53.
  • [41] Vida TA, Brito C, Lima TS, Spinelli JE, Cheung N, Garcia A. Near-eutectic Zn–Mg alloys: interrelations of solidification thermal parameters, microstructure length scale and tensile/corrosion properties. Curr Appl Phys. 2019;19:582–98.
  • [42] Gouveia GL, Kakitani R, Gomes LF, Afonso CRM, Cheung N, Spinelli JE. Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: interplay of cooling rate and microstructure in mechanical properties. J Mater Res. 2019;34:1381–94.
  • [43] Taha AS, Hammad FH. Application of the Hall–Petch relation to microhardness measurements on Al, Cu, Al-MD 105, and Al-Cu alloys. Phys Status Solidi A. 1990;119:455–62.
  • [44] Brito C, Costa TA, Vida TA, Bertelli F, Cheung N, Spinelli JE, Garcia A. Characterization of dendritic microstructure, intermetallic phases, and hardness of directionally solidified Al–Mg and Al–Mg–Si alloys. Metall Mater Trans A. 2015;46:3342–55.
  • [45] Bertelli F, Brito C, Ferreira IL, Reinhart G, Nguyen-Thi H, Mangelinck-Noël N, Cheung N, Garcia A. Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al–Sn–(Si;Cu) alloys. Mater Des. 2015;72:31–42.
  • [46] Verissimo NC, Brito C, Santos WLR, Cheung N, Spinelli JE, Garcia A. Interconnection of Zn content, macrosegregation, dendritic growth, nature of intermetallics and hardness in direction-ally solidified Mg–Zn alloys. J Alloys Compd. 2016;662:1–10.
  • [47] Callister WD. Materials science and engineering: an introduction. 10th ed. Hoboken: Wiley; 2018.
  • [48] MatWeb: Online materials information resource. 2019. http://www.matweb.com/. Accessed 15 Nov 2019.
  • [49] Kilicaslan MF, Karakose E. Depth sensing indentation analyses of hypereutectic Al–10Ni-XSc (X=0, 1, 2) alloys. Met Mat Int. 2017;23:473–80.
  • [50] Chankitmunkong S, Eskin DG, Limmaneevichitr C. Structure refinement, mechanical properties and feasibility of deformation of hypereutectic Al–Fe–Zr and Al–Ni–Zr alloys subjected to ultra-sonic melt processing. Mater Sci Eng, A. 2020;788:139567.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84ac705e-6700-45d7-a687-093f02d07f40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.