PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A single-parameter predictor of the effectiveness of the cavitation erosion process

Autorzy
Identyfikatory
Warianty tytułu
PL
Jednoparametrowy wskaźnik efektywności procesu erozji kawitacyjnej
Języki publikacji
EN
Abstrakty
EN
A parameter pertaining to material susceptibility to cavitation damage under identified loadings is proposed. A probability mass function of cavitation loadings is suggested to represent environmental conditions and fatigue performance of a material at a specified standard regime, as the material properties are considered to control the performance of the erosion process and are suggested to be taken into account for its quantification. Therefore, the value of the parameter is assumed to follow from calculations employing the probability mass function of the loadings and fatigue characteristics of the material, as well as energy absorption in stress-strain cycle of the loading, corrected for the presence of inhibiting processes. The appropriate threshold conditions for erosion are assumed to follow from the relationship between the inverse fatigue function and the loading distribution. In this paper, a preliminary experimental verification of the correlation between the postulated parameter and the cavitation erosion parameter is carried out. The reliability and applicability of the parameter as well as the sources of inaccuracy and uncertainties are also discussed.
PL
W pracy przedstawiono wskaźnik oceny skłonności materiału do ulegania niszczeniu erozyjnemu w warunkach zidentyfikowanych obciążeń kawitacyjnych. Przyjęto założenie, że o przebiegu procesu decydują rozkład obciążeń oraz odporność zmęczeniowa materiału. Do wyznaczenia wskaźnika oceny wykorzystuje się zatem rozkład prawdopodobieństwa obciążeń jako czynnik reprezentujący warunki środowiskowe oraz standaryzowaną krzywą zmęczeniową, reprezentującą właściwości niszczonego materiału. Wartość wskaźnika jest ustalana według procedury, która obejmuje zestawienie powyższych zależności oraz wyliczenia korekcyjne, związane z absorpcją energii w cyklu zmęczeniowym i występowaniem procesów hamujących rozwój erozji. Przyjęto, że warunki progowe skutecznego niszczenia materiału określone są poprzez graniczną wartość obciążenia dla zmęczenia wysokocyklowego. Dokonano wstępnej weryfikacji istotności wskaźnika poprzez sprawdzenie występowania korelacji pomiędzy jego wartością a parametrami erozji kawitacyjnej dla określonych materiałów i warunków doświadczalnych. Przedyskutowano ponadto stosowalność wskaźnika i źródła potencjalnych błędów w określaniu jego wartości.
Twórcy
autor
  • The Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences, 80-231 Gdańsk, ul. Fiszera 14, Poland
Bibliografia
  • [1] Knapp R.T., Recent investigations of the mechanics of cavitation and cavitation damage, Trans. ASME, Vol. 75, 1955, pp. 1045-1054.
  • [2] Thiruvengadam, A., Waring S., Mechanical Properties of Metals and their Cavitation Damage Resistance, Journal of Ship Research, Vol. 10, 1966, pp. 1-9.
  • [3] Kubota A., Kato H., Yamaguchi H., Maeda M., Unsteady Structure Measurements of Cloud Cavitation on a Foil Section using Conditional Sampling Technique, Journal of Fluids Engineering - Transactions of ASME, Vol. 111, 1989, pp. 204-210.
  • [4] Zhang Y.J., Li S.C., Hammitt F.G., Statistical investigation of bubble collapse and cavitation erosion effect, Wear, Vol. 133, Issue 2, 1989, pp. 257-265.
  • [5] Belahadji B., Franc J-P., Michel J-M., A Statistical Analysis of Cavitation Erosion Pits, Transactions of the ASME: Journal of Fluids Engineering, Vol. 113, 1991, pp. 700-705.
  • [6] Giren B.G., Szkodo M., Steller, J., The Influence of Residual Stresses on Cavitation Resistance of Metals; Wear, Vol. 233-235, 1999, pp. 86-92.
  • [7] Giren B.G., Material Proprieties Essential for Cavitation Erosion of Laser Produced Surface Alloys; Journal of Materials Science, Vol.39, 2004, pp. 295-297.
  • [8] Steller J., International Cavitation Erosion Test and Quantitative Assessment of Material Resistance to Cavitation, Wear, Vol. 233-235, 1999, pp. 51-64.
  • [9] Morozov V.P., Cavitation Noise as a Train of Sound Pulses Generated at Random Times, Sov. Phys. Acoust., Vol. 14, 1969, pp. 361-365.
  • [10] Sobczyk K., Stochastic Models for Fatigue Damage of Materials, Advances in Applied Probability, Vol. 19, 1987, pp. 652-673.
  • [11] Kalestrup K.J., Hansson I., Morch K.A., A Simple Model for Cavitation Erosion of Metals, Journal of Physics D: Applied Physics, Vol. 11, 6, 1978, pp. 899-912.
  • [12] Hammit F.G., De M.K., Cavitation Damage Prediction, Wear, Vol. 52, 1979, pp. 243-262.
  • [13] Steller K., Steller, J., On cavitation erosion prediction, 7th Int. Conference on Erosion by Liquid and Solid Impact, Cambridge, 1987.
  • [14] Karimi A., Leo W.R., Phenomenological Model for Cavitation Erosion Rate Computation, Materials Science and Engineering, Vol. 95, 1987, pp. 1-14.
  • [15] Pereira F., Avellan F., Dupont, Ph., Prediction of Cavitation Erosion - an Energy Approach, Journal of Fluid Engineering, Transactions of ASME, Vol. 120, 1998, pp. 719-727.
  • [16] Berchiche N., Franc J-P., Michel J-M., A Cavitation Erosion Model for Ductile materials, Transactions of ASME: Journal of Fluids Eng., Vol. 124, 2002, pp. 601-60.
  • [17] Dular M., Stoffel B., Sirok B., Development of a Cavitation Erosion Model. Wear. 261, 2006, pp. 642-655.
  • [18] Giren B.G., Steller J., Random Multistage Input and Energy Partition Approach to the Description of Cavitation Erosion Process, Stochastic Environmental Research and Risk Assessment, Vol. 23, 2009, pp. 263-273.
  • [19] Patrascoiu C., New Cavitation Erosion Model, 12th WSEAS International Conference on Computers, Heraklion, Greece, July 23-25, 2008.
  • [20] Stinebring D.R., Arndt R.E.A., Holl J.W., Scaling of Cavitation Damage, Journal of Hydronautics, Vol. 11, 1977, pp. 67-73.
  • [21] Stinebring D.R., Holl J.W., Arndt R.E.A., Two Aspects of Cavitation Damage in the Incubation Zone: Scaling By Energy Considerations and Leading Edge Damage. Journal of Fluid Engineering, Vol. 102, 1980, pp. 481-485.
  • [22] Lecoffre Y., Marcoz J., Franc J.P., Michel J.M., Tentative procedure for scaling cavitation damage. Int. Symp. on Cavitation in Hydraulic Structures and Turbomachinery, Albuquerque (USA), June 24-26. 1985.
  • [23] Lecoffre Y., Cavitation Erosion, Hydrodynamic Scaling Laws, Practical Method of Long Term Damage Prediction, CAV'95 International Symposium on Cavitation, Deauville, 1995, France.
  • [24] Rao P.V., Buckley D.H., Unified Empirical Relations for Cavitation and Liquid Impingement Erosion Processes, Wear, Vol. 120, 1987, pp. 253-288.
  • [25] Rao, P.V., Buckley D.H., Cavitation Erosion Size Scale Effects, Wear, Vol. 96, 1984, pp.239-253.
  • [26] Fortes-Patella R., Rebound J.L., The New Approach to Evaluate the Cavitation Erosion Power, Journal of Fluid Engineering - Transaction of ASME, Vol. 120, 1998, pp. 335-344.
  • [27] Soyama H., Kumano H., Saka M., “A New Parameter to Predict Cavitation Erosion”, Fourth International Symposium on Cavitation, June 20-23, 2001, California Institute of Technology, Pasadena, CA USA.
  • [28] Shalnev K.K., Kozyrev S.P., Relaxation Hypothesis of Cavitation Erosion, Doklady Akademii Nauk SSSR, Vol. 202, 1972, pp. 1057-1060.
  • [29] Karimi A., Martin J.L., Cavitation Erosion of Materials, International Metals Review, Vol. 31, 1986, pp. 1-26.
  • [30] Heymann F.J., On the Time Dependence of the Rate of Erosion Due to Impingement or Cavitation, Erosion by Cavitation or Impingement, ASTM Special Technical Pub. 408, 1967, pp. 70-110.
  • [31] Richman R.H., McNaughton W.P., Correlation of cavitation erosion behaviour with mechanical properties of metals, Wear, Vol. 140, 1990, pp. 63-82.
  • [32] Richman R.H., McNaughton W.P., A Metallurgical Approach to Improved Cavitation-Erosion Resistance, Journal of Materials Engineering and Performance, Vol. 6, 1997, 633-641.
  • [33] Bedkowski W., Gasiak G., Lachowicz C., Lichtarowicz A., Lagoda T., Macha E., Relations between cavitation erosion resistance of materials and their fatigue strength under random loading, Wear, Vol. 230, 1999, pp. 201-209.
  • [34] Hattori S., Nakao E., Cavitation Erosion Mechanisms and Quantitative Evaluation Based on Erosion Particles, Wear, Vol. 249, 2002, pp. 839-845.
  • [35] Ahmed S.M., Hokkirigawa K., Ito Y., Oba R., Scanning electron microscopy observation on the incubation period of vibratory cavitation erosion, Wear, Vol. 142, 1991, pp. 303-314.
  • [36] Iwai, Y., Okada, T., Tanaka, S., A Study of Cavitation Bubble Collapse Pressures and Erosion pt.2: Estimation of Erosion from the Distribution of Bubble Collapse Pressures, Wear, Vol. 133, 1989, pp. 233-243.
  • [37] Wheeler W.H., Mechanism of Cavitation Erosion, Cavitation in Hydrodynamics. National Phys. Lab. Symp., H. M. Stationery Office, London 1956, Proceedings, paper No. 21.
  • [38] Steller K., Bugała R., Steller J., Pressure pulses interaction with walls confining a cavitating flow, International Symp. On Cavitation and Erosion in Hydraulic Structures and Machinery, Nanjing, China 1992, pp. 51-59.
  • [39] Christopher P.R., Crabbe D.R., A discourse on factors which control fatigue behaviour in high yield low alloy steel structures, Ocean Engineering, Vol. l, 1969, pp. 497-520.
  • [40] Ritchie R.O., Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture, Vol. 100, 1999, pp. 55-83.
  • [41] Dornowski W., Perzyna P., Localized fracture phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings, Acta Mechanica, Vol. 155, 2002, pp. 233-255.
  • [42] Sitnik L., Mathematical description of the cavitation erosion process and its utilization for increasing the materials resistance to cavitation, 2nd Joint ASCE/ASME Mechanics Conf. on Cavitation in Hydraulic Structures and Turbo Machinery, Albuquerque, New Mexico, 1985, pp. 21-30; ASME bound vol. G00297.
  • [43] Sitnik L.: Strömungskavitationsverschleiß. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2005, p. 143.
  • [44] Pistun I.P., Tkachev V.I., Accumulation of damage in low cycle fatigue in working media, Strength of Materials, Vol. 9, 1977, pp. 568-571.
  • [45] Golos K.M., A Total Strain Energy Density Model of Metal Fatigue. Strength of Materials, Vol. 27, 1995, pp. 32-40.
  • [46] Tchankov D.S., Vesselinov K.V., Fatigue life prediction under random loading using total hysteresis energy, International Journal of Pressure Vessels and Piping. Vol. 75. 1998, pp. 955-960.
  • [47] Santulli C., Study of impact hysteresis curves on e-glass reinforced polypropylene laminates, Journal of Materials Science Letters, Vol. 22, 2003, pp. 1557-1562.
  • [48] Qiao P., Yang, M., Bobaru, F., Impact Mechanics and High-Energy Absorbing Materials: Review, Journal of Aerospace Engineering, Vol. 21, 2008, pp. 235-248.
  • [49] Araya R., Marivil, M., Mir C., Moroni O., Sepulveda A., Temperature and Grain Size Effects on the Behavior of CuAlBe SMA Wires under Cyclic Loading, Materials Science and Engineering: A, Vol. 496, 2008, pp. 209-213.
  • [50] Xiao-Yan T., De-Jun W., Hao X., Investigation of Cyclic Hysteresis Energy in Fatigue Failure Process, International Journal of Fatigue, Vol. 11, 1989, pp. 353-359.
  • [51] Kliman V., Fatigue Life Estimation under Random Loading Using the Energy Criterion, International Journal of Fatigue, Vol. 7, 1985, p. 39-44.
  • [52] Chung-Youb K., Ji-Ho S., Fatigue Crack Closure and Growth Behavior under Random Loading, Engineering Fracture Mechanics, Vol. 49, 1994, pp. 105-120.
  • [53] Lee M.K., Kim W.W., Rhee C.K., Lee W.J., Liquid Impact Erosion Mechanism and Theoretical Impact Stress Analysis in TiN-Coated Steam Turbine Blade Materials, Metallurgical and Materials Transactions A, Vol. 30A, 1999, pp. 961-967.
  • [54] ASTM Standard G40-88: Standard terminology relating to wear and erosion, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 1989.
  • [55] Reiman J.A., Landy M.A., Kaplan M.P., Effect of Spectrum Type on Fatigue Crack Growth Life, Fatigue crack growth under spectrum loads, ASTM Special Technical Publication, 595, 1976, pp. 187-202.
  • [56] Petrucci G., Zuccarello B., Fatigue Life Prediction under Wide Band Random Loading, Fatigue Fracture Engineering Material and Structures, Vol. 27, 2004, pp. 1183-1195.
  • [57] Avellan F., Dupont P., Farhat M., Cavitation Erosion Power, lst ASME-JSME Fluid Engineering Conference, Portland, Oregon, USA, 23-27 June; Proceedings of the Cavitation, Vol. 116, 1991, p. 135-140.
  • [58] Steller J., Krella A., On fractional approach to assessment of material resistance to cavitation, Wear, Vol. 263, 2007, pp. 402-411.
  • [59] http://www.matweb.com/search/DataSheet.aspx?MatGUID=fe9372f9e0b94f308381b46008152624, MatWeb Material Property Data, July 2, 2011.
  • [60] Dragolich K.S., DiMatteo N.D.; Fatigue data book: light structural alloys. ASM International, Materials Park OH 44073-0002, 1995, p. 39.
  • [61] Gogilashvili O.I., Effect of stress concentration on the corrosion-fatigue strength of iron and steel, Material Science, Vol. 4, 1969, pp. 121-122.
  • [62] Yanchishin F.P., Shchepanskii Ya.S., Effect of grain size on fatigue and corrosion-fatigue strength of Armco iron, Material Science, Vol. 9, 1975, pp. 220-221.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a6e1c4-47e3-42ce-85a5-862ff67ffb66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.