PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EU-SENSE detection system in mass gathering evacuation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
System wykrywania EU-SENSE podczas ewakuacji zgromadzeń masowych
Języki publikacji
EN
Abstrakty
EN
Current CBRNe detection systems are mainly available as standalone detectors, and seldom offer the potential of networking and data fusion. The research objective is to simulate the scenario-based models built in a virtual environment to examine the possible impact of the EU-SENSE system on chemical detection technology, based on an innovative CBRNe detection and identification system, which is a network of heterogeneous sensor nodes, on the evacuation of a mass gathering. The chemical detection system presents real possibilities of understanding situations that depend on the first symptoms of human health and behaviour. This information will facilitate taking appropriate measures when CBRNe hazard forces to evacuation, including quick identification of the hazard and necessity to modify preliminary evacuation gates (in terms of their localization and width).
PL
Obecne systemy detekcji CBRNe są dostępne głównie w postaci samodzielnych detektorów, rzadko oferując potencjał sieci i fuzji danych. Celem badań jest symulacja modeli scenariuszowych zbudowanych w środowisku wirtualnym w celu zbadania w systemie EU-SENSE możliwego wpływu technologii detekcji chemicznej, opartej na innowacyjnym systemie detekcji i identyfikacji CBRNe, stanowiącym sieć heterogenicznych węzłów sensorycznych, na ewakuację masowego zgromadzenia. System detekcji chemicznej daje realne możliwości zrozumienia sytuacji, od których zależą pierwsze objawy związane ze stanem zdrowia i zachowaniem ludzi. Informacje te ułatwią podjęcie odpowiednich działań w sytuacji, gdy zagrożenie CBRNe wymusza ewakuację, w tym szybką identyfikację zagrożenia i konieczność modyfikacji wstępnych bram ewakuacyjnych (w zakresie ich lokalizacji i szerokości).
Rocznik
Strony
175--197
Opis fizyczny
Bibliogr. 31 poz.
Bibliografia
  • 1. Ahmed Q.A., Memish Z.A., From the “Madding Crowd” to mass gatherings-religion, sport, culture and public health, “Travel Medicine and Infectious Disease” 2019, 28, 91–97. https://doi.org/10.1016/j.tmaid.2018.06.001.
  • 2. Aitsi-Selmi A., Murray W., Heymann D., McCloskey B., Azhar E.I., Petersen E., Zumla A., Dar O., Reducing risks to health and wellbeing at mass gatherings: the role of the Sendai Framework for Disaster Risk Reduction, “International Journal of Infectious Diseases” 2016, 47, 101–104. http://dx.doi.org/10.1016/j. ijid.2016.04.006.
  • 3. Basak B., Gupta S., Developing an agent-based model for pilgrim evacuation using visual intelligence: A case study of Ratha Yatra at Puri, “Computers, Environment and Urban Systems” 2017, 64, 118–131. https://doi.org/10.1016/j. compenvurbsys.2017.01.006.
  • 4. DCLG 2007, Fire safety risk assessment open air events and venues guide, London.
  • 5. Dominguez C., Can SA be defined? In Situation Awareness: Papers and Annotated Bibliography (U), M. Vidulich, C. Dominguez, E. Vogel and G. McMillan (eds.), Vol. AL/CF-TR-1994-0085. Armstrong Laboratory, Wright-Patterson Air Force Base 1994, OH, 5–15.
  • 6. Endsley M.R., Toward a Theory of Situation Awareness in Dynamic Systems, “Human Factors Journal” 1995, 37(1), 32–64. https://journals.sagepub.com/ doi/10.1518/001872095779049499.
  • 7. Endsley M.R., A survey of situation awareness requirements in air-to-air combat fighters, “International Journal of Aviation Psychology” 1993, 3(2), 157–168. https://www.researchgate.net/publication/243779977_A_Survey_of_Situation_Awareness_Requirements_in_Air-to-Air_Combat_Fighters.
  • 8. Endsley M.R., Expertise and situation awareness. In Ericsson K.A., Charness N., Feltovich P.J., Hoffman R.R. (eds.), The Cambridge handbook of expertise and expert performance, Cambridge University Press, New York 2006, pp. 633–651. https://doi.org/10.1177%2F1555343415572631.
  • 9. Endsley M.R., Bolte B., Jones D.G., Designing for situation awareness: An approach to human-centred design, Taylor & Francis, London 2003, https://doi. org/10.1201/9780203485088.
  • 10. Endsley M.R., Robertson M.M., Training for situation awareness in individuals and teams [in:] Endsley M.R., Garland D.J. (eds.), Situation awareness analysis and measurement, Mahwah, LEA, NJ 2000. https://doi.org/10.1177%2F1555343415572631.
  • 11. Gayathri H., Aparna P.M., Verma A., A review of studies on understanding crowd dynamics in the context of crowd safety in mass religious gatherings, “International Journal of Disaster Risk Reduction” 2017, 25, 82–91. http://dx.doi. org/10.1016/j.ijdrr.2017.07.017.
  • 12. GSSG. 2008. Guide to Safety at Sports Grounds. TSO – Norwich.
  • 13. Hawkins E.R., Brice J.H., Fire Jumpers: Description of Burns and Traumatic Injuries from a Spontaneous Mass Gathering and Celebratory Riot, “The Journal of Emergency Medicine” 2010, 38(2), 182–187. https://doi.org/10.1016/j. jemermed.2008.08.028.
  • 14. HSG195. The event safety guide. A guide to health, safety and welfare at music and similar events. The Health and Safety Executive – Richmond 2007.
  • 15. Hutchins E., The technology of team navigation In Intellectual Teamwork, J. Galegher, R. Kraut and C. Egido (eds.), Hillsdale, Lawrence Erlbaum, NJ 1990.
  • 16. Jian-ping Y., Zheng F., Zhi T., Jia-yun S., Performance-Based Fire Safety Assessment of City Underwater Tunnel, “Procedia Engineering” 2011, 11, 86–90. https://doi.org/10.1016/j.proeng.2011.04.631.
  • 17. Lindhout P., Kingston-Howlett J., Hansen F.T., Reniers G., Reducing unknown risk: The safety engineers’ new horizon, “Journal of Loss Prevention in the Process Industries” 2020, 68, 104330. https://doi.org/10.1016/j.jlp.2020.104330.
  • 18. Lovreglio R., Ronchi E., Kinsey M.J., An Online Survey of Pedestrian Evacuation Model Usage and Users, “Fire Technology” 2020, 56, 1133–1153. https://doi. org/10.1007/s10694-019-00923-8.
  • 19. Masood A., Scazzoli D., Sharma N., Moullec Y.L., Ahmad R., Reggiani L., Magarini M., Alam M.M., Surveying pervasive public safety communication technologies in the context of terrorist attacks, “Physical Communication” 2020, 41, 101–109. https://doi.org/10.1016/j.phycom.2020.101109.
  • 20. McCloskey B., Endericks T., Catchpole M., Zambon M., McLauchlin J., Shetty N., Manuel R., Turbitt D., Smith G., Crook P., Severi E., Jones J., Ibbotson S., Marshall R., Smallwood C.A.H., Isla N., Memish Z.A., Al-Rabeeag A.A., Zumla A., London 2012 Olympic and Paralympic Games: public health surveillance and epidemiology, “The Lancet” 2014, 383, 2083–2089. https://doi.org/10.1016/ S0140-6736(13)62342-9.
  • 21. Memish Z.A., Steffen R., White P., Dar O., Azhar E.I., Sharma A., Zumla A., Mass gatherings medicine: public health issues arising from mass gathering religious and sporting events, “The Lancet” 2019, 393, 2073–2083. https://doi.org/10.1016/ S0140-6736(19)30501-X.
  • 22. Qin J., Liu Ch., Huang Q., Simulation on fire emergency evacuation in special subway station based on Pathfinder, “Case Studies in Thermal Engineering” 2020, 21, 100677. https://doi.org/10.1016/j.csite.2020.100677.
  • 23. Ronchi E. (in press), Developing and validating evacuation models for fire safety engineering, “Fire Safety Journal”. https://doi.org/10.1016/j.firesaf.2020.103020.
  • 24. Ronchi E., Uriz F.N., Criel X., Reilly P., Modelling large-scale evacuation of music festival, “Case Studies in Fire Safety” 2016, 5, 11–19. http://dx.doi.org/10.1016/j. csfs.2015.12.002.
  • 25. Soomaroo L., Murray V., Disasters at mass gatherings: lessons from history. “PLOS Current Disasters” 2012, 4, RRN1301-RRN1301. https://currents.plos. org/disasters/index.html%3Fp=65.html.
  • 26. Sperry R.W., The riddle of consciousness and the changing scientific worldview, “Journal of Humanistic Psychology” 1995, 35(2), 7–33. https://doi.org/10.117 7%2F00221678950352002.
  • 27. Szklarski Ł., Maik P., Walczyk W., Developing a novel network of CBRNe sensors in response to existing capability gaps in current technologies Proc. SPIE 11416, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, 114160Y (24 April 2020); https://doi.org/10.1117/12.2558044.
  • 28. Thunderhead Engineering 2020, Pathfinder User Manual, USA.
  • 29. Thunderhead Engineering 2021, Pathfinder Results User Manual, USA. https:// support.thunderheadeng.com/docs/pathfinder/2021-1/results-user-manual/.
  • 30. WHO 2015. Public health for mass gatherings: key considerations, eds. Enderics T. et al. WHO Press – Geneva.
  • 31. Yi J., Pan S., Chen Q., Simulation of pedestrian evacuation in stampedes based on a cellular automaton model, “Simulation Modelling Practice and Theory” 2020, 104, 102–147. https://doi.org/10.1016/j.simpat.2020.102147.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a6c4a1-e93f-48fb-bda6-5841c3cb261c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.