PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Navigator preparation during spraying by UAVs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the implementation of navigator preparation during agricultural spraying, conditioning the safe and precise performance of the task. This assumption was confirmed during spraying with unmanned aerial vehicles carried out in 2021–2023. The experience gained and conclusions enabled the development of a concept of initial and direct navigational preparation for unmanned aircraft systems performing spraying. It is also possible to use this algorithm to perform deactivation by drones. The results obtained from the conducted aerial tests (within two scenarios: agricultural spraying and decontamination) have also shown that the risk analysis methodology recommended by EASA (SORA) entails a number of limitations and cannot be applied during spraying as it causes gaps in safety management. Therefore, a proprietary EPEP risk analysis method has been developed specifically for spraying, which allows the pilot, the operator of an unmanned aircraft, to perform a risk analysis and manage it accordingly immediately before performing the task, compensating or minimizing the hazards that should be at an acceptable level before spraying.
Słowa kluczowe
Rocznik
Strony
247--266
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Military Recruitment Centre in Tychy
  • Silesian University of Technology
  • Fire University, Institute of Internal Security, Warsaw, Poland
Bibliografia
  • 1. AIP Polska, section ENR 5.1.2-3, PAŻP, 2020.
  • 2. Alexandrov, D., Pertseva, E., Berman, I., Pantiukhin, I., Kapitonov, A., (2019). Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles, 3–9. DOI: 10.23919/FRUCT.2019.8711917.
  • 3. Application User Guide dFPL, SUM-SUTM-dFPL-1.1.-25022020, PAŻP, 2020.
  • 4. ASSISTANCE project. Online: https://assistance-project.eu [25.11.2020].
  • 5. Asghar, S., Alahakoon, D., Churilov, L., (2006). A comprehensive conceptual model for disaster management. Journal of Humanitarian Assistance, 1360(0222), pp. 1–15.
  • 6. Bailon-Ruiz, R., Lacroix, S., Wildfire remote sensing with UAVs: A review from the autonomy point of view. International Conference on Unmanned Aircraft Systems (ICUAS 2020).
  • 7. Balcerzak, T., Kostur, K., Żmigrodzka, M., (2019). Unmanned Aerial Vehicles in Fire Protection [Bezzałogowe statki powietrzne w ochronie przeciwpożarowej]. Revista europea de derecho de la navegación marítima y aeronáutica, no. 36, pp. 39–62.
  • 8. Biglia, A., Grella, M., Bloise, N., Comba, L., Mozzanini, E., Sopegno, A., Gay, P., (2022). UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Science of the Total Environment, 845, 157292.
  • 9. Chomoncik, M., Feltynowski, M., Smolarczyk, L., (2018). Działania ratownicze komponentu medycznego Polskiej Ciężkiej Grupy Poszukiwawczo-Ratowniczej (HUSAR Poland) podczas akcji po trzęsieniu ziemi w Nepalu w roku 2015. Bezpieczeństwo i Technika Pożarnicza / Safety & Fire Technique, Vol. 51, Issue 3.
  • 10. Djudjic, D., (2017). Drone operator arrested in Arizona for interfering with firefighters, Diyphotography. Online: https://www.diyphotography.net/man-gets-arrested-flying-drone-wildfire-hampering-firefighters [25.11.2020].
  • 11. DRIVER+ project. Online: https://www.driver-project.eu [25.11.2020].
  • 12. Droneagri (2023), Online: https://droneagri.pl/ [26.10.2023].
  • 13. Drone spraying in Poland – Institute of Precision Agriculture. Online: https://rolnictwoprecyzyjne.eu/. [26.10.2023].
  • 14. Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., Hanan, A., (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14) 2706. doi:10.3390/en12142706
  • 15. Fellner, A., Jafernik, H., Fellner, R., (2022). Prawo i procedury lotnicze z uwzględnieniem systemów bezzałogowych. Gliwice.
  • 16. Fellner, A., (1999). Analiza systemów nawigacyjnych i koncepcja stacji permanentnych RTK DGPS dla potrzeb lotnictwa. Dęblin: WSOSP.
  • 17. http://awiacja.imgw.pl/index.php?product=airmet-opis [27.11.2020].
  • 18. https://awiacja.imgw.pl/ [10.10.2023].
  • 19. INSARAG Guidelines, Volume II: Preparedness and Response, Manual B: Operations, United Nations Office for the Coordination of Humanitarians Affairs (OCHA), 2020, p. 6.
  • 20. Kim, C.J., Yuan, X., Kim, M., Kyung, K.S., & Noh, H.H., (2023). Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Scientific Reports, 13(1), 10834.
  • 21. Maddikunta, P.K.R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T.R., Khan, W.Z., & Pham, Q.V., (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21(16), 17608–17619.
  • 22. Merkisz, J., Nykaza, A., (2016). Analiza i szacowanie ryzyka podczas lotu egzaminacyjnego vlos (visual line of sight) operatora bezzałogowego statku powietrznego, Bezpieczeństwo i ekologia, Autobusy, 6.
  • 23. Nawaz, H., Ali, H. M., Laghari, A., (2020). UAV Communication Networks Issues: A Review. Archives of Computational Methods in Engineering. doi.org/10.1007/s11831-020-09418-0
  • 24. Przewodnik po Krajowym Planie Zarządzania Kryzysowego (2018). Warsaw: RCB.
  • 25. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I., (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148.
  • 26. Rasi, J.R., Neto, M.M., & Bernardo, R., (2020). Design and development of an unmanned aerial vehicle for agricultural spraying in Brazil. Int J Innov Educ Res, 8, 405–419.
  • 27. ResponDrone project. Online: https://respondroneproject.com/about-us/overview. [25.11.2020].
  • 28. Trappey, A.J., Lin, G.B., Chen, H.K., & Chen, M.C., (2023). A comprehensive analysis of global patent landscape for recent R&D in agricultural drone technologies. World Patent Information, 74, 102216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a5b310-9688-4594-b11b-82479bf82684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.