PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy efficiency economics of conversion of biogas from the fermentation of sewage sludge to biomethane as a fuel for automotive vehicles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the analysis of efficiency and energy economics potential applicability of biomethane as an alternative fuel for powering company owned motor vehicles and public transport vehicles produced by the conversion of surplus biogas generated in municipal sewage treatment plants. Biogas produced at municipal wastewater treatment plants in the process of anaerobic fermentation of sewage sludge is a source of renewable energy used for energy generation. Currently in Poland, the most commonly applied management method of biogas produced from sewage sludge involves the production of energy in a cogeneration system. Having in mind the condition of the natural environment, the search for alternative fuels for motor vehicles is underway. One of the types that can be used is biomethane, produced by the conversion of biogas produced in the fermentation process of organic wastes contained in sewage sludge. The biogas purified to contain about 95% of methane can be used in vehicles designed to burn gaseous fuel. In order to implement the conversion process of biogas to biomethane, it is necessary to work out a balance sheet of biogas produced at the sewage treatment plant, to study its chemical composition and to select the optimal technology to obtain high-energy gas fuel that meets required standards. In the course of the biogas conversion process, carbon dioxide is removed, which is regarded here as the so-called energy ballast. The technology used for powering motor vehicles by means of biomethane has been successfully implemented in many countries of the European Union. In view of environmental considerations, the proposed solution is generally supported because biomethane-powered engines have lower levels of emissions harmful to people and the environment.
Rocznik
Strony
131--140
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • PhD Eng.; Water Networks Company,W. Pola 22, 33-300 Nowy Sącz, Poland
  • PhD Eng.; Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • MSc Eng.; Water Networks Company,W. Pola 22, 33-300 NowySącz, Poland
  • PhD Eng.; Assoc. Prof.; Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
autor
  • Assoc.Prof.; Odessa Institute of Trade and Economics of Kyiv National University of Trade and Economics, Inglezi 6, 65070 Odessa, Ukraine
Bibliografia
  • [1] Gaska K., Generowicz A., Zimoch I., Ciula J., Iwanicka Z. (2017). A high-performance computing (HPC) based integrated multithreaded model predictive control (MPC) for water supply networks, Architecture Civil Engineering Environment, 10(4), 141-151.
  • [2] GisW., Grzelak P., Żółtowski A. (2013). Czynniki rozwoju transportu miejskiego zasilanego biometanem (Development faktors of biometane fuels in urban traffic). Prace Naukowe Politechniki Warszawskiej, 98, 175-181.
  • [3] Ustawa o odnawialnych źródłach energii (Act on renewable energy sources), Dz. U. z 2015 r. poz. 478 (z póź. zm.).
  • [4] Ciuła J., Gaska K., Generowicz A., Hajduga G. (2018). Energy from Landfill Gas as an Example of Circular Economy, E3S Web Conf. 30 03002, DOI: 10.1051/e3sconf/20183003002.
  • [5] Persson M., Jönsson O., Wellinger A. (2006). Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. IEA Bioenergy. Sweden.
  • [6] Cebula J. (2009). Biogas purification by sorption techniques. Architecture Civil Enineering Eenvironment, 2(2), 95-104.
  • [7] Smerkowska B. (2013). Wytwarzanie biometanu - aspekty technologiczne i ekonomiczne. VII Spotkanie Interesariuszy Sieci Projektu BIOMASTER. Kraków.
  • [8] Waśkiewicz J., Gis W., Menes E. (2015). Wstępna ocena ekonomiczna wykorzystania biometanu w miejskim transporcie autobusowym. Studium przypadku. (Initial economic assessment of the use of biomethane in urban bus transport. Case study). Transport samochodowy, 2, 11-21.
  • [9] Berent-Kowalska G., Kacprowska J., Moskal I., D. Piwko, Jurgaś A. (2017).Warszawa. Energia ze źródeł odnawialnych w 2016 roku (Renewable sources energy in 2016), Główny Urząd Statystyczny, 36-38.
  • [10] Sprawozdanie technologiczne z pracy oczyszczalni ścieków za 2017 rok. (2018). Materiały wewnętrzne Spółki Sądeckie Wodociągi. (Technological report on the operation of sewage treatment plant for 2017. Internal materials of the Company. Sądeckie Wodociągi).
  • [11] Śliwka M. (2013). Możliwości wykorzystania gazu składowiskowego jako paliwa pojazdów mechanicznych w Polsce (Possibilities of using landfill gas as a fuel for motor vehicles in Poland). Inżynieria Ekologiczna, 34, 222-228.
  • [12] Rasi, S., Läntelä, J., &Rintala, J. (2011). Trace compounds affecting biogas energy utilisation - A review. Energy Conversion and Management, 52(12), 3369-3375. DOI:10.1016/j.enconman.2011.07.005
  • [13] Pöschl, M., Ward, S., & Owende, Ph. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305-3321.
  • [14] Themelis N. J., Ulloa P.A.(2007). Methane generation in landfills. Renewable Energy, 32(7), 1243-1257.
  • [15] Karina R.S., &Electo E. S. Lora (2009). Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenergy, 33(9), 1101-1107.
  • [16] Ozkaya B., Demir A., &BilgiliM. S. (2007). Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors.
  • [17] MurphyJ.D. &McKeogh, E. (2004). Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste. Renewable Energy, 29, 1043-1057.
  • [18] Budzianowski W. M. (2012). Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(1), 342-349.
  • [19] Dillah D. D. (2006). Heating Landfill Facilities Using Infrared Heaters. Retrieved from http://www.epa.gov/lmop/documents/pdfs/conf/9th/dil lah_abs.pdf.
  • [20] Czop M., &Kajda-Szcześniak M. (2013). Evaluation of Basic Fuel Properties of Waste from Renovation and Construction Selected from Municipal Wastes. Rocznik Ochrona Środowiska, 15, 1426-1440.
  • [21] Gaska, K., Generowicz, A., Zimoch, I., Ciuła, J., Siedlarz, D. (2018). A GIS based graph oriented algorithmic model for poly-optimization of waste management system. Architecture Civil Engineering Environment, 11(4), 52-159, DOI: 10.21307/ACEE- 2018-061.
  • [22] Patterson T., Esteves S., Dinsdale R.,&Guwy A. (2011). An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy, 39(3), 1806-1816.
  • [23] Sun Q., Li H., Yan J., Liu L., Yu Z., Yu X. (2015). Selection of appropriate biogas upgrading technology- a review of biogas cleaning, upgrading and utilization. Renewable and Sustainable Energy Reviews, 51, 521-532.
  • [24] Deng L.,Hägg M. (2010). Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 4(4), 638-646.
  • [25] Murphy J.D., McCarthy K. (2005). The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy, 30(14), 2111-2127.
  • [26] Fallade M., &Eklund M. (2015). Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linköping in Sweden. Journal of Cleaner Production, 98(1),17-28.
  • [27] Gaska K., & Generowicz A. (2017). Advanced computational methods in component-oriented modelling of municipal solid waste incineration processes, Architecture Civil Engineering Environment, 10(1), 117-130.
  • [28] Gaska K., & Pikoń K. (2007). Modelling of the IntegratedWaste Management Systems using Object- Oriented Methodology. Proceedings of WSEAS International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, WWAI ’07, Arcachon, France, October 14-16, 2007, WSEAS, (pp.174-183).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a3133e-728c-42b2-b611-96e9739ff1b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.