PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

NMR-based metabonomics of cerebrospinal fluid applied to amyotrophic lateral sclerosis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was applications of cerebrospinal fluid (CSF) NMR-based metabolic fingerprinting to amyotrophic lateral sclerosis (ALS) as possible early diagnostic tool. Two CSF sample categories were collected: 9 ALS patients and 13 age-matched control patients (without neurological disease). Metabolic profile of the CSF was determined by high resolution proton NMR spectroscopy. For statistical analysis magnitudes of 33 signals of the NMR spectrum were selected. Partial least square discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA) modeling were used to find potential biomarkers of the disease. Those analyses showed that it was possible to distinguish the ALS patients from the control ones on the basis of the CSF metabolic profile. Significantly higher levels of metabolites observed in the patients with ALS may represent the state of anaerobic metabolism and excitotoxicity.
Twórcy
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Department of Neurology, Medical University of Warsaw, Warsaw, Poland
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland
  • Department of Neurology, Medical University of Warsaw, Warsaw, Poland
Bibliografia
  • [1] Cleveland D.W., Rothstein J.D.: From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci 2001, 2, 806–819.
  • [2] Beuche W., Yushchenko M., Mader M., Maliszewska M., Felgenhauer K., Weber F.: Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 2000, 11, 3419–3422.
  • [3] Bogdanov M., Brown R.H., Matson W., Smart R., Hayden D., O’Donnell H., Flint B.M., Cudkowicz M.: Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. 2000, 29, 652–658.
  • [4] Camu W., Billiard M., Baldy-Moulinier M.: Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol. Scand. 1993, 88, 51–55.
  • [5] Rozen S., Cudkowicz M.E., Bogdanov M., Matson W.R., Kristal B.S., Beecher C., Harrison S., Vouros P., Flarakos J., Vigneau-Callahan K., Matson T.D., Newhall K.M., Beal M.F., Brown R.H., Kaddurah-Daouk R.: Metabolomic analysis and signatures in motor neuron disease. Metabolomics 2005, 1, 101–108.
  • [6] Mitchell R.M., Simmons Z., Beard J.L., Stephens H.E., Connor J.R.: Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve 2010, 42, 95–103.
  • [7] Wilson M.E., Boumaza I., Lacomis D., Bowser R., Cystatin C.: A candidate biomarker for amyotrophic lateral sclerosis. PLoS One 2010, 5, e15133.
  • [8] Holmes E., Tsang T.M., Tabrizi S.J.: The application of NMR-based metabonomics in neurological disorders. NeuroRx 2006, 3, 358–372.
  • [9] Viant M.R., Lyeth B.G., Miller M.G., Berman R.F.: An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed. 2005, 18, 507–516.
  • [10] Holmes E., Tsang T.M., Huang J.T., Leweke F.M., Koethe D., Gerth C.W., Nolden B.M., Gross S., Schreiber D., Nicholson J.K., Bahn S.: Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 2006, 3, e327.
  • [11] Toczyłowska B., Chalimoniuk M., Wodowska M., Mayzner-Zawadzka E.: Changes in concentration of cerebrospinal fluid components in patients with traumatic brain injury. Brain Res. 2006, 1104, 183–189.
  • [12] Bowser R., Lacomis D.: Applying proteomics to the diagnosis and treatment of ALS and related diseases. Muscle Nerve 2009, 40, 753-762.
  • [13] Pal K., Sharma U., Gupta D.K., Pratap A., Jagannathan N.R.: Metabolite profile of cerebrospinal fluid in patients with spina bifida: a proton magnetic resonance spectroscopy study. Spine (Phila Pa 1976 ) 2005, 30, E68–E72.
  • [14] Brooks B.R., Miller R.G., Swash M., Munsat T.L.: El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral. Scler. Other Motor Neuron Disord 2000, 1, 293–299.
  • [15] Wevers R.A., Engelke U., Wendel U., de Jong J.G., Gabreels F.J., Heerschap A.: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin. Chem. 1995, 41, 744–751.
  • [16] Lutz N.W., Maillet S., Nicoli F., Viout P., Cozzone P.J.: Further assignment of resonances in 1H NMR spectra of cerebrospinal fluid (CSF). FEBS Lett. 1998, 425, 345–351.
  • [17] Kriat M., Nicoli F., Vion-Dury J., Confort-Gouny S., Dano P., Grisoli F., Gastaut J.L., Cozzone P.J.: High resolution NMR spectroscopy of CSF: methodological issues and perspective clinical applications. Ann. Biol. Clin. (Paris) 1991, 49, 461–467.
  • [18] van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J.: Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006, 7, 142.
  • [19] Karp N.A., Griffin J.L., Lilley K.S.: Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics 2005, 5, 81–90.
  • [20] Li X., Yang S.B., Qiu Y.P., Zhao T., Chen T.L., Su M.M., Chu L.X., Lv A.P., Liu P., Jia W.: Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics 2010, 6, 109–118.
  • [21] Trygg J., Wold S.: Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 2002, 16, 19–128.
  • [22] Wold S., Antti H., Lindgren F., Ohman J.: Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems 1998, 44, 175–185.
  • [23] Westerhuis J.A., de Jong S., Smilde A.K.: Direct orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems 2001, 56, 13–25.
  • [24] Bylesjo M., Rantalainen M., Cloarec O., Nicholson J.K., Holmes E., Trygg J.: OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics 2006, 20, 341–351.
  • [25] Ellis D.I., Dunn W.B., Griffin J.L., Allwood J.W., Goodacre R.: Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 2007, 8, 1243–1266.
  • [26] Lajtha A., Gibson G.E., Daniels G.A.: Brain energetics. Integration of molecular and cellular processes. Springer 2007.
  • [27] Irani D.N.: Cerebrspinal fluid in clinical practice. Springer Inc. 2009.
  • [28] Vijayalakshmi K., Alladi P.A., Sathyaprabha T.N., Subramaniam J.R., Nalini A., Raju T.R.:Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Res. 2009, 1263, 122–133.
  • [29] Blasco H., Corcia P., Moreau C., Veau S., Fournier C., Vourc’h P., Emond P., Gordon P., Pradat P.F., Praline J., Devos D., Nadal-Desbarats L., Andres C.R.: 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 2010, 5, e13223.
  • [30] Kumar A., Bala L., Kalita J., Misra U.K., Singh R.L., Khetrapal C.L., Babu G.N.: Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin. Chim. Acta 2010, 411, 563–567.
  • [31] Siegel G.J., Albers W.: Basic neurochemistry: molecular, cellular, and medical aspects. Tom 1. Elsevier Academic Press, 2006.
  • [32] Elble R., Giacobini E., Higgins C.: Choline levels are increased in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 1989, 10, 45–50.
  • [33] Zwingmann C., Richter-Landsberg C., Brand A., Leibfritz D.: NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 2000, 32, 286–303.
  • [34] Lederer C.W., Torrisi A., Pantelidou M., Santama N., Cavallaro S.: Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 2007, 8, 26.
  • [35] Globus M.Y., Ginsberg M.D., Busto R.: Excitotoxic index - a biochemical marker of selective vulnerability. Neurosci Lett. 1991, 127, 39–42.
  • [36] Niebroj-Dobosz I., Janik P.: Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS). Acta Neurol. Scand. 1999, 100, 6–11.
  • [37] Niebroj-Dobosz I., Janik P., Mickielewicz A., Jamrozik Z., Kwiecinski H.: Neurotoxic activity of serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients against some enzymes of glutamate metabolism. Neurol. Neurochir. Pol. 2001, 35, 81–89.
  • [38] Shi P., Wei Y., Zhang J., Gal J., Zhu H.: Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. J. Alzheimers Dis. 2010, 20 Suppl 2, S311–S324.
  • [39] Kuwabara S.: Amyotrophic lateral sclerosis - electrophysiologic aspects of its pathophysiology and new therapeutic options. Brain Nerve 2010, 62, 885–891.
  • [40] Shaw P.J., Forrest V., Ince P.G., Richardson J.P., Wastell H.J.: CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995, 4, 209–216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a2844a-be4c-4d82-aaa3-adae759ff826
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.