PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Titanium dioxide nanotube photo-electrodes in different electrolyte mixtures and the impacts on their characteristics and photo-catalytic abilities under visible light

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TiO2  nanotube arrays were fabricated using electrochemical anodization of titanium foils, where different types of electrolytes were tested to determine conceptual choice for nanotubes fabrication. These electrolytes are 1M (NH4)2SO4  containing 0.5% wt NH4F, 1M Na2SO4  containing 0.5% wt NH4F, 1M NaF containing 0.5% wt (NH4)2SO4  and a mixture of water: ethylene glycol 1:9 containing 0.5% wt NH4F. The foils were marked as EG type (Ethylene Glycol), AS type (Ammonium sulfate), SS type (sodium sulfate) and SF type (sodium fluoride). The photocatalytic capabilities and characterization of the fabricated NTAs were analyzed using SEM, XRD, and DRS. The degradation ratio of designated organic pollutants (Rhodamine B) was analyzed. The obtained results have proven that foils fabricated using Ethylene glycol have significant photocatalytic abilities, with a degradation ratio of EG-SS-SF-AS types being 80% to 85%, 70% to 80%, 70% to 75% and 52% to 55%, respectively.
Rocznik
Strony
34--40
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • School of Municipal and Environmental Engineering, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin, China
autor
  • School of Municipal and Environmental Engineering, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin, China
autor
  • School of Municipal and Environmental Engineering, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin, China
Bibliografia
  • 1. Chen, Q., Liu, H., Xin, Y., Cheng, X., Zhang, J., Li, J., Wang, P. & Li, H. (2013). Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta, 99, 152-160. DOI: 10.1016/j.electacta.2013.03.032.
  • 2. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Construction of n, s codoped TiO2 ncs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta, 103, 134-142. DOI: 10.1016/j.electacta.2013.04.072.
  • 3. Yao, Y., Li, K., Chen, S., Jia, J., Wang, Y. & Wang, H. (2012). Decolorization of rhodamine b in a thin-film photoelectrocatalytic (pec) reactor with slant-placed TiO2 nanotubes electrode. J. Chem. Eng. 187, 29-35. DOI: 10.1016/j. cej.2012.01.056.
  • 4. Sun, S., Chen, C., Sun, J., Peng, Q., Lü, K. & Deng, K. (2013). Enhancement of catalytic degradation of rhodamine b under sunlight with au loading TiO2 nanotube arrays. J. Procedia Environ. Sci. 18, 620-624. DOI: 10.1016/j.proenv.2013.04.085.
  • 5. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac. J. Hazard. Mater. 254, 141-148. DOI: 10.1016/j.jhazmat.2013.03.062.
  • 6. Yu, X., Zhang, Y. & Cheng, X. (2014). Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite. Electrochim. Acta 137, 668-675. DOI: 10.1016/j. electacta.2014.06.027.
  • 7. Zhong, H., Shaogui, Y., Yongming, J. & Cheng, S. (2009). Microwave photocatalytic degradation of rhodamine b using TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci. 21(2), 268-272. DOI: 10.1016/ S1001-0742(08)62262-7.
  • 8. Fan, M., Hu, S., Ren, B., Wang, J. & Jing, X. (2013). Synthesis of nanocomposite TiO2 /zro 2 prepared by different templates and photocatalytic properties for the photodegradation of rhodamine b. J. Pow. Technol. 235, 27-32. DOI: 10.1016/j.powtec.2012.09.042.
  • 9. Cheng, X., Pan, G. & Yu, X. (2015). Visible light responsive photoassisted electrocatalytic system based on cds ncs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment. Electrochim. Acta. 156, 94-101. DOI:10.1016/j.electacta.2015.01.042.
  • 10. Chen, Q., Liu, H., Xin, Y. & Cheng, X. (2013). TiO2 nanobelts-effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. Electrochim. Acta. 111, 284-291. DOI: 10.1016/j.electacta.2013.08.049.
  • 11. Momeni, M. (2015). Fabrication of copper decorated tungsten oxide-titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light, Appl. Surf. Sci. 357, 160-166. DOI: 10.1016/j. apsusc.2015.09.015.
  • 12. Momeni, M., Hakimian, M. & Kazempour A. (2015). In-situ manganese doping of TiO2 nanostructures via singlestep electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst. Ceram. Int. 41, 13692-13701. DOI: 10.1016/j. ceramint.2015.07.158.
  • 13. Momeni, M. & Nazari, Z. (2016). Preparation of TiO2 and WO3-TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process: A stable and efficient photocatalyst. Ceram. Int. 42, 8691-8697. DOI: 10.1016/j. ceramint.2016.02.103.
  • 14. Cheng, X., Yu, X. & Xing, Z. (2013). Synthesis and characterization of c-n-s-tridoped TiO2 nano-crystalline photocatalyst and its photocatalytic activity for degradation of rhodamine b. J. Phys. Chem. Sol. 74(5), 684-690. DOI: 10.1016/j.jpcs.2013.01.004.
  • 15. Cao, G.J., Bo, C., Wang, W.Q., Tang, G.Z., Feng, Y.C. & Wang, L.P. (2014). Fabrication and photodegradation properties of TiO2 nanotubes on porous ti by anodization. J. Trans. Nonferrous Met. Soc. China 24(8), 2581-2587. DOI: 10.1016/ S1003-6326(14)63386-0.
  • 16. Momeni, M., Mirhosseini, M. & Chavoshi, M. (2016). Growth and characterization of Ta2O5 nanorod and WTa2O5 nanowire films on the tantalum substrates by a facile onestep hydrothermal method. Ceram. Int. 42, 9133-9138. DOI: 10.1016/j.ceramint.2016.03.002.
  • 17. Bai, J., Zhou, B., Li, L., Liu, Y., Zheng, Q., Shao, J., Zhu, X., Cai, W., Liao, J. & Zou, L. (2008). The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J. Mater. Sci. 43(6), 1880-1884. DOI: 10.1007/ s10853-007-2418-8.
  • 18. Momeni, M. & Ghayeb, Y. (2016). Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods, J. Mol. Catal. A - Chemical. 417, 107-115. DOI: 10.1016/j.molcata.2016.03.024.
  • 19. Momeni, M. & Ghayeb, Y. (2016). Fabrication, characterization and photoelectrochemical performance of chromiumsensitized titania nanotubes as efficient photoanodes for solar water splitting, J. Sol. Stat. Electrochem. 20, 683-689, DOI: 10.1007/s10008-015-3093-3.
  • 20. Momeni, M. & Ghayeb, Y. (2016). Cobalt modified tungsten-titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J. Mater Sci: Mater Electron. 27, 3318-3327. DOI: 10.1007/s10854-015-4161-2.
  • 21. Momeni, M., Mirhosseini, M., Chavoshi, M. & Hakimizade, A. (2016). The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure. J. Mater Sci: Mater Electron. 27, 3941-3947. DOI: 10.1007/ s10854-015-4246-y.
  • 22. Momeni, M., Hakimian, M. & Kazempour, A. (2016). Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng. 32(7), 514-519. DOI: 10.1179/1743294415Y.0000000073.
  • 23. Momeni, M., Ghayeb, Y. & Ghonchegi, Z. (2015). Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visiblelight photocatalyst. Ceram. Int. 41, 8735-8741. DOI: 10.1016/j. ceramint.2015.03.094.
  • 24. Momeni, M. & Ghayeb, Y. (2015). Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloys Compd.. 637, 393-400. DOI: 10.1016/j.jallcom.2015.02.137.
  • 25. Momeni, M., Ghayeb, Y. & Davarzadeh, M. (2015). Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J. Electroanal. Chem. 739, 149-155. DOI: 10.1016/j.jelechem.2014.12.030.
  • 26. Xu, C.L., Bao, S.J., Kong, L.B., Li, H. & Li, H.L. (2006). Highly ordered MnO2 nanowire array thin films on ti/si substrate as an electrode for electrochemical capacitor. J. Solid State Chem. 179(5), 1351-1355. DOI: 10.1016/j.jssc.2006.01.058.
  • 27. Sklar, G., Singh, H., Mahajan, V., Gorhe, D., Namjoshi, S. & LaCombe, J. (2005). Nanoporous titanium oxide morphologies produced by anodizing of titanium. MRS Proceedings: Cambridge Univ Press p. R1 2 DOI: 10.1557/PROC-876-R1.2.
  • 28. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2014). Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Carbon 66, 450-458. DOI: 10.1016/j. carbon.2013.09.021.
  • 29. Tian, C.Y., Zhao, W.W., Wang, J., Xu, J.J. & Chen, H.Y. (2012). Amplified quenching of electrochemiluminescence from cds sensitized TiO2 nanotubes by cdte-carbon nanotube composite for detection of prostate protein antigen in serum. J. Analyst 137(13), 3070-3075. DOI: 10.1039/C2AN35493D.
  • 30. Al-Sammarraie, A.M.A. (2014). The role of anodizing potentials in making TiO2 nanotubes in (ethylene glycol / nh 4 f /water) electrolyte. Arch. Appl. Sci. Res. 11-13.
  • 31. Okada, M., Tajima, K., Yamada, Y. & Yoshimura, K. (2012). Self-organized formation of short TiO2 nanotube arrays by complete anodization of ti thin films. J. Phys. Proc. 32, 714-718. DOI: 10.1016/j.phpro.2012.03.622.
  • 32. Byun, C., Jang, J., Kim, I., Hong, K. & Lee, B.W. (1997). Anatase-to-rutile transition of titania thin films prepared by mocvd. J. Mater. Res. Bull. 32(4), 431-440. DOI: 10.1016/ S0025-5408(96)00203-6.
  • 33. Merabet, S., Robert, D., Weber, J.V., Bouhelassa, M. & Benkhanouche, S. (2009). Photocatalytic degradation of indole in uv/tio2: Optimization and modelling using the response surface methodology (rsm). J. Environ. Chem. Lett. 7(1), 45-49. DOI: 10.1007/s10311-008-0137-2.
  • 33. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Bianchi, C.L., Cappelli, S., Oliva, C., Scardi, P., Leoni, M. & Fermo, P. (2010). Solar photoactivity of nano-n-TiO2 from tertiary amine: Role of defects and paramagnetic species. J. Appl. Catal. 96(3), 314-322. DOI: 10.1016/j.apcatb.2010.02.027.
  • 34. Khataee, A., Arefi -Oskoui, S., Fathinia, M., Esmaeili, A., Hanifehpour, Y., Joo, S.W. & Hamnabard, N. (2015). Synthesis, characterization and photocatalytic properties of er-doped pbse nanoparticles as a visible light-activated photocatalyst. J. Mol. Catal. A: Chem. 398, 255-267. DOI: 10.1016/j. molcata.2014.11.009.
  • 35. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. J. Chem. Rev. 95(1), 69-96. DOI: 10.1021/ cr00033a004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-849fcb31-628b-4713-a0bb-64c2cb4fddbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.