Identyfikatory
Warianty tytułu
Zastosowanie opartych na genach reporterowych biosensorów w screeningu chemicznych zanieczyszczeń w środowisku
Języki publikacji
Abstrakty
The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase), xylE (catechol 2,3-dioxygenase), gfp (green fluorescent proteins) and its mutated forms, lux (prokaryotic luciferase), luc (eukaryotic luciferase), phoA (alkaline phosphatase), gusA and gurA (β-glucuronidase), antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments.
Prezentowana praca przeglądowa zawiera opis możliwości aplikacyjnych biosensorów opartych na genetycznie zmodyfikowanych mikroorganizmach wyposażonych w geny reporterowe. W pracy przedstawiono defekty i zalety nowych naukowych osiągnięć oraz metodologicznych rozwiązań dotyczących genetycznych systemów w biosensorach przeznaczonych do środowiskowego screeningu zanieczyszczeń. Opisano najbardziej użyteczne i popularne genetyczne fuzje sekwencji promotorowych z takimi genami reporterowymi jak: lacZ (β-galaktozydaza), xylE (katechol 2,3-dioxygenaza), gfp (gen białka zielonej fluorescencji) oraz jego zmutowane warianty, lux (prokariotyczna lucyferaza), luc (eukariotyczna lucyferaza), phoA (alkaliczna fosfataza), gusA i gurA (β-glukuronidaza), geny oporności na antybiotyki oraz metale ciężkie. Tego typu mikrobiologiczne biosensory znalazły szerokie zastosowanie w testach genotoksyczności, badaniach nad biodostępnością oraz stresem oksydacyjnym, a także w detekcji i monitoringu substancji toksycznych w wodzie pitnej, różnych próbach środowiskowych, wodach powierzchniowych, glebie i osadach.
Czasopismo
Rocznik
Tom
Strony
113--123
Opis fizyczny
Bibliogr. 50 poz., tab.
Twórcy
autor
- Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Division of Sanitary Biology and Biotechnology, ul. Wiejska 45 E, 15-351 Bialystok, Poland
autor
- Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Division of Sanitary Biology and Biotechnology, ul. Wiejska 45 E, 15-351 Bialystok, Poland
Bibliografia
- [1] Abd-El-Haleem, D., Ripp, S., Zaki, S. & Sayler, G.S. (2007). Detection of nitrate/nitrite bioavailability in wastewater using a luxCDABE-based Klebsiella oxytoca bioluminescent bioreporter, Journal of Microbiology and Biotechnology, 17 (8): 1254–61.
- [2] Ahn, J-M., Hwang, E.T., Youn, CH-H, Banu, D.L., Kim, B.CH., Niazi, J.H. & Gu, M.B. (2009). Prediction and classification of the modes of genotoxic action using bacterial biosensors specifi c for DNA damages, Biosensors and Bioelectronics, 25, 767–772.
- [3] Balsiger, H.A., de la Torre, R., Lee, W.-Y. & Cox, M.B. (2010). A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration or sterilization, Science of the Total Environment, 15, 408, 6, 1422–1429.
- [4] Beck, V., Pfitscher, A. & Jungbauer, A. (2005). GFP-reporter for a high throughput assay to monitor estrogenic compounds, Journal of Biochemical and Biophysical Methods, 64, 19–37.
- [5] Behzadian, F., Barjeste, H., Hosseinkhani, S. & Zarei, A.R. (2011). Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds, Current Microbiology, 62, 2, 690–6.
- [6] Biran, A., Ben Yoav, H., Yagur-Kroll, S., Pedahzur, R., Buchinger, S., Shacham-Diamand, Y., Reifferscheid, G. & Belkin, S. (2011). Microbial genotoxicity bioreporters based on sulA activation, Analytical and Bioanalytical Chemistry, 400, 9, 3013–24.
- [7] Biran, A., Yagur-Kroll, S., Pedahzur, R., Buchinger, S., Reifferscheid, G., Ben Yoav, H., Shacham- -Diamand, Y. & Belkin, S. (2010). Bacterial genotoxicity bioreporters, Microbial Biotechnology, 3, 4, 412–27.
- [8] Bock Gu, M., Mitchell, R.J. & Kim, B.C. (2004). Whole-cell-based biosensors for environmental biomonitoring and application, Advances in Biochemical Engineering/Biotechnology, 87, 269–305.
- [9] Bovee, T.F.H., Helsdingen, R.J.R, Hamers, A.R.M., Brouwer, B.A. & Nielen, M.W.F. (2011). Recombinant cell bioassay for the detection of (gluco) corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants, Analytical and Bioanalytical Chemistry, 401, 873–882.
- [10] Chauchan A., Layton, A.C., Williams, D.E., Smartt, A.E., Ripp, S., Karpinets, T.V., Brown, S.D. & Salyer, G.S. (2011). Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44, Journal of Bacteriology, 193, 18, 5009–5010 (2011).
- [11] Cheng, V.A. & van Dyk, T.K. (2004). Stress responsive bacteria: biosensors as environmental monitors, Advances in Microbial Physiology, 49, 131–74.
- [12] Chobtang, J., de Boer, I.J.M., Hoogenboom, R.L.A.P., Haasnoot, W., Kijlstra & Meerburg, A.B.G. (2011). The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain, Sensors, 11, 11692–11716.
- [13] de Las Heras, A. & de Lorenzo, V. (2012). Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment, Methods in Molecular Biology, 834, 261–81.
- [14] Errampalli, D., Leung, K., Cassidy, M.B., Kostrzyńska, M., Blears, M., Lee, H. & Trevors, J.T. (1999). Applications of green fluorescent protein as a molecular marker in environmental microorganism, Journal of Microbiological Methods, 35, 187–199.
- [15] Elad, T., Almog, R., Yagur-Kroll, S., Levkov, K., Melamed, S., Shacham-Diamand, Y. & Belkin, S. (2011). Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips, Environmental Science & Technology, 1, 45, 19, 8536–44.
- [16] Gierach, I., Shapero, K., Eyster, T.W. & Wood, D.W. (2011), Bacterial biosensors for evaluating potential impacts of estrogenic endocrine disrupting compounds in multiple species, Environmental Toxicology, 4. Doi: 10. 1002/tox.20708.
- [17] Girotti, S., Feeri, E.N., Fumo, M.G. & Maiolini, E. (2008), Monitoring of environmental pollutants by bioluminescent bacteria, Analytica Chimica Acta, 608, 2–29.
- [18] Hendriks, G., Atallah, M., Raamsman, M., Morolli, B., van der Putten, H., Jaadar, H. Tijedens, I., Esveldt- -van Lange, R., Mullenders, L., van de Water, B. & Vrieling, H. (2011). Sensitive DsRed fl uorescence- -based reporter cell systems for genotoxicity and oxidative stress assessment, Mutation Research, 709–710, 49–59.
- [19] Klimek, B., Fiałkowska, E., Fyda, J., Kocerba-Soroka, W., Pajdak-Stós, A. & Sobczyk, Ł. (2013). The Toxicity of Aluminium Salts to Lecane Inermis Rotifers: Are Chemical and Biological Methods Used to Overcome Activated Sludge Bulking Mutually Exclusive?, Archives of Environmental Protection 39, 3, 127–138.
- [20] Korzekwa, K., Gołaś, J. & Harnisz, M. (2012). Evaluation of anthropogenic pollution in river water based on the genetic diversity of Aeromonas hydrophila, Archives of Environmental Protection, 38, 3, 41–50.
- [21] Lei, Y., Chen, W. & Mulchandani, A. (2006). Microbial biosensors, Analytica Chimica Acta, 568, 200–210.
- [22] Mariner, K.R., Ooi, N., Roebuck, D., O’Neill, A.J. & Chopra, I. (2011). Further characterization of Bacillus subtilis antibiotic biosensors and their use for antibacterial mode-of-action studies, Antimicrobial Agents and Chemotherpy, 55, 4, 1784–1786.
- [23] Matejczyk, M. (2004). Bacterial biosensors, Postępy Mikrobiologii, 2, 43, 155–165 (in Polish).
- [24] Matejczyk, M. (2010). The potential of application of microbial biosensors, Postępy Mikrobiologii, 49, 4, 297–304 (in Polish).
- [25] Matejczyk, M. & Rosochacki, S.J. (2006). Application of plasmid-borne green fluorescent protein-based bacterial biosensors for benzene and its selected derivatives detection in water ecosystems, Polish Journal of Environmental Studies, 15, 5D, 703–707.
- [26] Matejczyk, M. & Rosochacki, S.J. (2007). Gfp gene as a fl uorescence tool for genes’ expression analysis and biosensors construction, Biotechnology, 1, 76, 53–62 (in Polish).
- [27] Matejczyk, M. &. Zalewski, P. (2011). Endocrine disrupting compounds and its biological activity, Kosmos, 60, 1–2, 17–32 (in Polish),
- [28] Ng, S.P., Palombo, E.A. & Bhave, M. (2012). Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium, Achromobacter sp. AO22, World Journal of Microbiology and Biotechnology, 28, 5, 2221–8.
- [29] Podgórska, B. & Węgrzyn, G.A. (2006). Modified Vibrio harveyi mutagenicity assay based on bioluminescence induction, Letters in Applied Microbiology, 42, 6, 578–582.
- [30] Podgórska, B., Królicka, A., Lojkowska, E. & Węgrzyn, G. (2008). Rapid detection of mutagens accumulated in plant tissues using a novel Vibrio harveyi mutagenicity assay, Ecotoxicology and Environmental Safety, 70, 2, 231–235.
- [31] Reder-Christ, K. & Bendas, G. (2011). Biosensor applications in the fi eld of antibiotic research – a review of recent development, Sensors, 11, 9450–9466.
- [32] Reifferscheid, G. & Buchinger, S. (2010). Cell-based genotoxicity testing: genetically modified and genetically engineered bacteria in environmental genotoxicology, Advances in Biochemical Engineering/Biotechnology, 118, 85–111.
- [33] Robbens, J., Dardenne, F., Devriese, L., de Coen, W. & Blust, R. (2010). Escherichia coli as a bioreporter in ecotoxicology, Applied Microbiology and Biotechnology, 88, 5, 1007–25.
- [34] Rosochacki S.J. & Matejczyk, M. (2002). Green fl uorescent protein as a molecular marker in microbiology, Acta microbiologica Polonica, 51, 205–216.
- [35] Rybtke, M.T., Borlee, B.R., Murakami, K., Irie, Y., Nielsen, T.E., Givskov, M., Parsek, M.R. & Tolker- -Nielsen, T. (2012) A fl uorescence-based reporter of cyclic di-GMP levels in Pseudomonas aeruginosa, Applied and Environmental Microbiology, 11. PMID: 22582064.
- [36] Shin, D., Moon, H.S., Lin, C.C., Barkay, T. & Nam, K. (2011). Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil, Environmental Pollution, 159, 2, 509–14.
- [37] Shin, H.J. (2011). Genetically engineered microbial biosensors for in situ monitoring of environmental pollution, Applied Microbiology and Biotechnology, 89, 4, 867–77.
- [38] Silva-Rocha, R., de Lorenzo, V. (2012). A GFP-lacZ bicistronic reporter system for promoter analysis in environmental gram-negative bacteria, PloS ONE, 7, 4, e34675. Doi: 10.1371/journal.pone.oo34675.
- [39] Song, W., Pasco, N., Gooneratne, R. & Weld, R.J (2012). Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement, Biosensors and Bioelectronics, 15, 35, 1, 69–74.
- [40] Struss, A.K., Pasini, P., Flomenhoft, D., Shashidhar, H. & Daunert, S. (2012). Investigating the effect of antibiotics on quorum sensing with whole-cell biosensing system, Analitycal and Bioanalitycal Chemistry, 402, 10, 3227–36.
- [41] Svobodová, K. & Cajthaml, T. (2010). New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment, Applied Microbiology and Biotechnology, 88, 839–847.
- [42] Tecon, R., Binggeli, O. & van der Meer, J.R. (2009). Double-tagged fl uorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability, Environmental Microbiology, 11, 9, 2271–83.
- [43] Urban, A., Eckermann, S., Fast, B., Metzger, S., Gehling, M., Ziegelbauer, K., Rübsamen-Waigmann, H. & Freiberg, Ch. (2007). Novel whole-cell antibiotic biosensors for compound discovery, Applied and Environmental Microbiology,73, 20, 6436–6443.
- [44] Wasterink, W.M.A., Stevenson, J.C.R., Lauwers, A., Griffi oen, G., Horbach, G.J. & Schoonen, W.G.E.J. (2009). Evaluation of the Vitotox™ and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development, Mutation Research, 676, 113–130.
- [45] Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A.P. & Heringa, M.B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources, Analitycal and Bioanalitycal Chemistry, 400, 915–929.
- [46] Yagi, K. (2007). Applications of whole-cell bacterial sensors in biotechnology and environmental science, Applied Microbiology and Biotechnology, 73, 1251–1258.
- [47] Yagur-Kroll, S., Bilic, B. & Belkin, S. (2010). Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation, Microbial Biotechnology, 3, 3, 300–10.
- [48] Yu, Q., Li, Y., Ma, A., Liu, W., Wang, H. & Zhuang, G. (2011). An effi cient design strategy for a whole- -cell biosensor based on engineered ribosome binding sequences, Analitycal and Bioanalitycal Chemistry, 401, 9, 2891–8.
- [49] Zhao, B., Baston, D.S., Khan, E., Sorrentino, C. & Denison, M.S. (2010). Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds, Science China Chemistry, 53, 5, 1010–1016.
- [50] Xu, T., Close, D.M., Sayler, G.S. & Ripp, S. (2013). Genetically modifi ed whole-cell bioreporters for environmental assessment, Ecological Indicators, 28, 125–141.
Identyfikator YADDA
bwmeta1.element.baztech-849e2c19-802f-499d-83c5-92815374494b