PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The cooling rate of the heated vapor compression cycle in case of using refrigerants R134a, R22, and R600a

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most power consuming part in the vapor compression cycle (VCC) is the gas compressor. Heating the refrigerant under constant volume after the compressor increases the condenser pressure, which consequently increases the cooling rate of the VCC. This study examined the influence of heating different refrigerants, i.e. R143a, R22, and R600a on the cooling rate of the VCC. Four experiments have been performed: the first experiment is a normal VCC, i.e. without heating, while in the second, third, and fourth experiments were carried out to raise the temperature of the refrigerant to 50°C, 100°C, and 150°C. It has been found that heating raises the refrigerant pressure in VCC and thereby improves the refrigerant’s mass flow rate resulting in an improvement in the cooling power for the same compressor power. Heating the refrigerant after the mechanical compressor increases the temperature of the condenser as well as the temperature of the evaporator when using refrigerant R134a, which prevents the refrigeration cycle to be used in freezing applications, however using refrigerant R22 or refrigerant R600a promotes the heated VCC to be used in freezing applications. Refrigerant R600a has the lowest operating pressure compared to R134a and R22, which promotes R600a to be used rather than R134a and R22 from a leakage point of view.
Rocznik
Strony
11--30
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, Faculty of Engineering, Beni-Suef University, Sharq El-Nile, New Beni-Suef, 62521 Beni-Suef, Egypt
  • Faculty of Technology and Education, Beni-Suef University, Sharq El-Nile, New Beni-Suef, 62521 Beni-Suef, Egypt
  • Faculty of Technology and Education, Suez University, 43527 Suez, Egypt
  • Mechanical Engineering Department, Faculty of Engineering, Beni-Suef University, Sharq El-Nile, New Beni-Suef, 62521 Beni-Suef, Egypt
Bibliografia
  • [1] Dupont J.L., Domanski P., Lebrun P., Ziegler F.: The Role of Refrigeration in the Global Economy, 38th Informatory Note on Refrigeration Technologies. IIF-IIR, 2019.
  • [2] Murthy A.C., Subiantoro A., Norris S., Fukuta M.: A review on expanders and their performance in vapor compression refrigeration systems. Int. J. Refrig. 106(2019), 427–446.
  • [3] Zhou W., Gan Z.: A potential approach for reducing the R290 charge in air conditioners and heat pumps. Int. J. Refrig. 101(2019), 47–55.
  • [4] Luo B., Zou P.: Performance analysis of different single stage advanced vapor compression cycles and refrigerants for high temperature heat pumps. Int. J. Refrig. 104(2019), 246–258.
  • [5] Salem M.R., El-Gammal H.A., Abd-Elaziz A.A., Elshazly K.M.: Study of the performance of a vapor compression refrigeration system using conically coiled tube-in-tube evaporator and condenser. Int. J. Refrig. 99(2019), 393–407.
  • [6] Alahmer A., Ajib S.: Solar cooling technologies: State of art and perspectives. Energ. Convers. Manage. 214(2020), 112896.
  • [7] Jain V., Sachdeva G., Kachhwaha S.S.: Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system. Energ. Convers. Manage 172(2018), 81–97.
  • [8] Zhu G., Chow T.-T.: Design optimization and two-stage control strategy on combined cooling, heating and power system. Energ. Convers. Manage 199(2019),111869. doi: 10.1016/j.enconman.2019.111869.
  • [9] Yin X., Wang X., Li S., Cai W.: Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems. Energy 116(2016), 1, 1006–1019.
  • [10] Alawi O.A., Salih J.M., Mallah A.R.: Thermo-physical properties effectiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant. Int. Commun. Heat Mass 103(2019), 54–61.
  • [11] Ahmed M.S., Abdel Hady M.R., Abdallah G.: Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Therm. Sci. Eng. Progress 5(2018), 589–596.
  • [12] Park C., Lee H., Hwang Y., Radermacher R.: Recent advances in vapor compression cycletechnologies. Int. J. Refrig. 60(2015), 118–134.
  • [13] Tahmasebzadehbaie M., Sayyaadi H.: Optimal design of a two-stage refrigeration cycle fornatural gas pre-cooling in a gas refinery considering the best allocation of refrigerant. Energ. Convers. Manage. 210(2020), 112743.
  • [14] Patel D., Singh K., Jagveer.: Improving the performance of vapor compression refrigeration system by using useful superheating. IJESRT 3(2014), 4, 5053–5056.
  • [15] Cui Z., Qian S., Yu J.: Performance assessment of an ejector enhanced dual temperature refrigeration cycle for domestic refrigerator application. Appl. Therm. Eng. 168(2020), 1–10.
  • [16] Qureshi M.A., Bhatt S.: Comparative analysis of cop using R134a and R600a refrigerant in domestic refrigerator at steady state condition. Int. J. Sci. Res. 3(2014),12, 935–939.
  • [17] Jain V., Sachdeva G., Kachhwaha S.S.: Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system. Energ. Convers. Manage. 172(2018), 81–97.
  • [18] Bellos E., Vrachopoulos M.Gr., Tzivanidis C.: Energetic and exergetic investigation of a novel solar assisted mechanical compression refrigeration system. Energ. Convers. Manage. 147(2017), 1–18.
  • [19] Engineering Equation Solver (EES), http://fchartsoftware.com/ees (accessed 2 May 2021).
  • [20] Bellos E., Vrachopoulos M.Gr., Tzivanidis C.: Theoretical investigation of a novel hybrid refrigeration cycle based on the partial thermal isochoric compression. Therm. Sci. Eng. Progress 11(2019), 239–248.
  • [21] Al-Alili A., Hwang Y., Radermacher R.: Review of solar thermal air conditioning technologies. Int. J. Refrig. 39(2014), 4–22.
  • [22] Chen Y., Xu D., Chen Z., Gao X., Han W.: Energetic and exergetic analysis of a solar-assisted combined power and cooling (SCPC) system with two different cooling temperature levels. Energ. Convers. Manage. 182(2019), 497–507.
  • [23] Wang J., Li S., Zhang G., Yang Y.: Performance investigation of a solar-assisted hybrid combined cooling, heating and power system based on energy, exergy, exergoeconomic and exergoenvironmental analyses. Energ. Convers. Manage. 196(2019), 227–241.
  • [24] Kwan T.H., Yao Q.: Thermodynamic and transient analysis of the hybrid concentrated photovoltaic panel and vapour compression cycle thermal system for combined heat and power applications. Energ. Convers. Manage. 185(2019), 232–247.
  • [25] Nehdi E., Kairouani L., Bouzaina M.: Performance analysis of the vapor compression cycle using ejector as an expander. Int. J. Energ. Res. 31(2007), 4, 364–375.
  • [26] Chaiwongsa P., Wongwises S.: Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. Int. J. Refrig. 30(2007), 4, 601–608.
  • [27] Disawas S., Wongwises S.: Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. Int. J.. Refrig. 27(2004), 6, 587–594.
  • [28] Li D., Groll E.A.: Transcritical CO2 refrigeration cycle with ejector-expansion device. Int. J. Refrig. 28(2005), 5, 766–773.
  • [29] Elbel S., Lawrence N.: Review of recent developments in advanced ejector technology. Int. J. Refrig. 62(2016), 1–18.
  • [30] Mansuriya K., Raja B.D., Patel V.K.: Experimental assessment of a small scale hybrid liquid desiccant dehumidification incorporated vapor compression refrigeration system: An energy saving approach. Appl. Therm. Eng. 174(2020), 1–14.
  • [31] Datta A., Halder P.: Thermal efficiency and hydraulic performance evaluation on Ag–Al2O3 and SiC–Al2O3 hybrid nanofluid for circular jet impingement. Arch. Thermodyn. 42(2021), 1, 163–182.
  • [32] Sanaya S., Emadi M., Refahi A.: Thermal and economic modeling and optimization of a novel combined ejector refrigeration cycle. Int. J. Refrig. 98(2019), 480–493.
  • [33] Bellos E., Tzivanidis C.: Alternative designs of parabolic trough solar collectors. Prog. Energ. Combust. 71(2019), 81–117.
  • [34] Chou D., Chang C., Chang J.: Energy conservation using solar collectors integrated with building louver shading devices. Appl. Therm. Eng. 168(2016), 1282–1294.
  • [35] El Mahallawy N., Aref F.A., Abd-Elhady M.S.: Effect of metallic reflectors and surface characteristics on the productivity rate of water desalination systems. Therm. Sci. Eng. Progress 17(2020), 100489.
  • [36] AL-Joboory H.N.S.: Experimental and theoretical investigation of an evacuated tube solar water heater incorporating wickless heat pipes. Arch. Thermodyn. 41(2020), 1, 3–31.
  • [37] Abdolhossein Zadeh A., Nakhjavani S.: Thermal analysis of a gravity-assisted heat pipe working with zirconia-acetone nanofluids: An experimental assessment. Arch. Thermodyn. 41(2020), 2, 65–83.
  • [38] Dubba S.K.: Flow of partially condensed R-134a vapor through an adiabatic capillary tube. Flow Meas. Instrum. 59(2018), 1–7.
  • [39] Digital K-Type Thermometer, http://www.meter-depot.com (accessed 2 May 2020).
  • [40] Pico Technology, http://www.picotech.com (accessed 2 May 2020).
  • [41] Abd-Elhady M.S., Bishara E., Halim M.A.: Increasing the cooling rate of the vapor compression cycle by heating. Int. J. Air-Cond. Refrig. 29(2021), 1, 2150009.
  • [42] Cengel Y.A., Boles M.A.: Thermodynamics: An Engineering Approach (6th Edn.). McGraw Hill, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-849bd977-4fde-4ff8-a05c-d16a9d3c35c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.