PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of ultrasonic cleaning for shipborne heat exchangers: Construction, numerical simulation, and verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current article describes the basics and prospects of the ultrasound-assisted cleaning of shell and tube heat exchangers that are used, e.g., on ships. A main issue of seawater heat exchangers is their clogging. After a certain operating time, the fouling process (barnacles, algae, etc.) starts, which results in a decreased performance that produces a noticeably reduced flow rate and a declining transmission of heat energy. Based on the current state of the art, heat exchangers are cleaned by mechanical or chemical (CIP, cleaning in place) methods. Especially on ship-based systems, a mechanical cleaning in very narrow spaces can be difficult and the usage of chemicals for CIP may generally be prohibited. An ultrasound-assisted cleaning would significantly save time and manning. Based on previous experiments, a test reactor represented by a shell and tube heat exchanger with ultrasound-assisted cleaning has been designed. A FEM (finite element method) simulation is performed to provide information about the ultrasound power distribution inside the reactor. Further, the assembly and commissioning of the test reactor with associated comparative measurements were carried out, which are also reported here.
Rocznik
Strony
41--47
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
  • Thyssenkrupp Marine Systems, Emden
  • Thyssenkrupp Marine Systems, Emden
  • Procesconsult.de
Bibliografia
  • 1. Baehr, H.D. & Stephan, K. (2016) Wärme- und Stoffübertragung. 9. Auflage. Berlin Heidelberg: Springer-Verlag.
  • 2. Chen, Y.-C. (2011) A comparative assessment of classification methods for resonance frequency prediction of Langevin piezoelectric transducers. Applied Mathematical Modelling 35, 7, pp. 3334–3344.
  • 3. Grote, K.H. & Feldhusen, J. (2014) Dubbel Taschenbuch für Maschinenbau. 24. Auflage. Berlin Heidelberg: Springer -Verlag.
  • 4. Lerch, R., Sessler, G. & Wolf, D. (2009) Technische Akustik. 1. Auflage. Berlin Heidelberg: Springer-Verlag.
  • 5. Miao, Q., You, S., Zheng, W., Zheng, X., Zhang, H. & Wang, Y. (2017) A grey-box dynamic model of plate heat exchangers used in an urban heating system. Energies 10, p. 1398.
  • 6. Müller, G. & Möser, M. (2017) Ultraschall in Medizin und Technik. Berlin Heidelberg: Springer-Verlag.
  • 7. Palmeri, M., Qiang, B., Chen, S. & Urban, M. (2017) Guidelines for finite-element modeling of acoustic radiation force-induced shear wave propagation in tissue-mimicking media. IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control 64, 1, pp. 78–92.
  • 8. VDI (2013) VDI-Wärmeatlas. 11. Auflage. Berlin Heidelberg: Springer-Verlag.
  • 9. Xu, H., Zeiger, B.W. & Suslick, K.S. (2013) Sonochemical synthesis of nanomaterials. Chemical Society Reviews 42, 7, pp. 2555–2567.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-849bb476-b405-434c-a82a-04a22a2cd19c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.