PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emisyjność głównych materiałów budowlanych – co przyniesie przyszłość

Identyfikatory
Warianty tytułu
EN
Emissivity of main building materials – what the future brings?
Języki publikacji
PL
Abstrakty
PL
Przemysł stanowi prawie 40% globalnego zużycia energii i prawie jedną czwartą bezpośrednich emisji dwutlenku węgla (CO2). Produkcja stali, cementu i aluminium jest odpowiedzialna za jedną czwartą tej energii i połowę bezpośrednich emisji CO2. W celu zmniejszenia globalnej emisji CO2, efektem którego będzie zahamowanie procesu globalnego ocieplenia, Międzynarodowa Agencja Energetyczna (IEA) zaproponowała scenariusze, które nawet przy gwałtownym wzroście zapotrzebowania na materiały do 2060 r. mogą spowodować redukcję emisji dla stali o 70%, cementu – o 20%, a aluminium – o 30%. Zakłada ona zmniejszenie globalnej emisji dwutlenku węgla w sektorze energetycznym o prawie 75%, redukcję ilości materiałów oraz poprawę wykorzystania materiałów w produktach finalnych, w tym również w sektorze budowlanym. Artykuł bazuje na danych zawartych w raportach Międzynarodowej Agencji Energetycznej z 2019 r.
EN
Industry accounts for almost 40% of global energy consumption and almost a quarter of direct CO2 emissions. Steel, cement and aluminium production alone represents 12% of global energy consumption and 13% of global CO2 emissions. By keeping emissions at the current level, we will use the remaining 2050 carbon budget in 12 years. In order to reduce carbon dioxide (CO2) emissions and thereby stop the global warming process, the International Energy Agency (IEA) has proposed scenarios that can lead to the reduction of emissions by 2060: for steel by 70%, for cement – by 20%, and for aluminium – by 30 even under the assumption of a rapid increase in demand for these materials. The Agency assumes a decrease in global CO2 emissions in the energy sector by almost 75%, a reduction of materials consumption and an improvement in the use of materials in final products, including the construction sector. The article is based on the data included in the reports published by the International Energy Agency in 2019.
Czasopismo
Rocznik
Tom
Strony
52--56
Opis fizyczny
Bibliogr. 19 poz., fot., rys.
Twórcy
  • University of Cambridge
  • Politechnika Śląska
Bibliografia
  • 1. Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015, Part two: Action taken by the Conference of the Parties at its twenty-first session. 2016, United Nations, Framework Convention on Climate Change.
  • 2. Global warming of 1.5°C – Summary for Policymakers. 2018, Intergovernmental Panel on Climate Change (IPPC).
  • 3. A Clean Planet for all – A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. 2018, European Commision: Brussels.
  • 4. Net Zero – The UK’s contribution to stopping global warming. 2019, Committee on Climate Change.
  • 5. Allwood J.M., Cullen J.M., Carruth M.A., Cooper D.R., McBrien M., et al.: Sustainable materials: with both eyes open. 2012: Citeseer.
  • 6. Perspectives for the Clean Energy Transition – The Critical Role of Buildings. 2019, International Energy Agency.
  • 7. Popkiewicz M.: Świat na rozdrożu. 2012.
  • 8. Material Efficiency in Clean Energy Transitions. 2019, International Energy Agency.
  • 9. Global Status Report 2018 – Towards a zero-emission, efficient, and resilient buildings and construction sector, Global Alliance for Building and Construction and International Energy Agency. 2018, Global Alliance for Building and Construction, International Energy Agency.
  • 10. World Population Review 2019. 2019; Available from: http://worldpopulationreview.com/.
  • 11. Orr J.J., Darby A.P., Ibell T.J., Evernden M.C., Otlet M.: Concrete structures using fabric formwork. Structural Engineer, 2011. 89(9), p. 20-26.
  • 12. Moynihan M.C., Allwood J.M.: Utilization of structural steel in buildings. „Proc. R. Soc. A”, 470 (2168)/2014.
  • 13. Dunant C.F., Drewniok M.P., Eleftheriadis S., Cullen J.M., Allwood J.M.: Regularity and optimisation practice in steel structural frames in real design cases. „Resources, Conservation and Recycling”, 134/2018, p. 294-302.
  • 14. Van den Heede P., De Belie N.: Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. „Cement and Concrete Composites”, 34 (4) 2012, p. 431-442.
  • 15. Yang K.H., Jung Y.B., Cho M.S., Tae S.H.: Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. „Journal of Cleaner Production”, 103/2015, p. 774-783.
  • 16. Golaszewski J., Kostrzanowska-Siedlarz A., Ponikiewski T., Miera P.: Influence of Multicomponent and Pozzolanic Cements Containing Calcareous Fly Ash and Other Mineral Admixtures on Properties of Fresh Cement Mixtures. IOP Conference Series: „Materials Science and Engineering”, 471/2019.
  • 17. Favier A., DeWolf C., Scrivener K., Habert G.: A Sustainable Future for The European Cement and Concrete Industry. ETH Zurich, 2018.
  • 18. Net Zero Carbon Buildings: A Framework Definition. Advancing Net Zero, 2019.
  • 19. Dunant C.F., Drewniok M.P., Sansom M., Corbey S., Allwood J.M., Cullen J.M.: Real and perceived barriers to steel reuse across the UK construction value chain. „Resources, Conservation and Recycling” 126/2017, p. 118-131.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8497f6be-f18c-4bcc-a500-52509ef0b230
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.