PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Assessment of Conditions for Sorghum (Sorghum Bicolor) Cultivation Based on the Determination of its Yield Plasticity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Ukraine, sorghum is grown in an area of 41000−49000 ha, with the yield ranging over years from 0.99 t/ha (2001) to 4.63 t/ha (2018). Such differences in productivity may be explained by the fact that, in recent decades, the value of degree-days in the Steppe zone increased from 3145 °C (1990) to 3550 °C (2019), and in the Forest Steppe zone by 445 °C. At the same time, the current annual precipitation in Ukraine is 578 mm, while sustainable farming requires 700 mm. In Steppe, which is a traditional sorghum cultivation zone, the change in climatic conditions led to insufficient soil moisture, with weather conditions influencing the formation of sorghum grain yield. The assessment of the stability and plasticity of the sorghum yield allows us to conclude that cultivation of this crop will not be effective without irrigation, adjustment of the cultivation technology or introduction of the varieties adapted to drought and high temperature. On the contrary, in Forest Steppe, conditions for obtaining high yields of sorghum improved in recent decades. Thus, in Vinnytsia region, favorable conditions formed in the years 2011−2020, in Kyiv region 2001−2005 and 2011−2015, and Poltava and Cherkasy regions 2006−2020. However, in Vinnytsia region, in the years 2001−2005, and in Kyiv region 2006−2010, low yield plasticity was caused by the negative impact of the extreme drought. Consequently, to reach high crop productivity and stable grain yield, it is necessary to introduce an ecologically sound sown area structure and use varieties of different genetic and geographical origins that are more resistant to the impact of adverse environment.
Słowa kluczowe
EN
Twórcy
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
autor
  • Uman National University of Horticulture, 1 Instytutska St., Uman, 20305, Ukraine
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
Bibliografia
  • 1. Agrawal A.A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science, 294, 321–326. https://doi.org/10.1126/science.1060701
  • 2. Awan Z.K., Naseem Z., Masood S.A., Nasir B., Sarwar F., Amin E., Qurban A. 2015. How to improve Sorghum bicolor (L) Moench production: an overview. Life Sci J, 12(3s), 99–103.
  • 3. Bloomfield J.A., Rose T.J., King G.J. 2014. Sustainable harvest: managing plasticity for resilient crops. Plant Biotechnol J, 12, 517–533. https://doi.org/10.1111/pbi.12198
  • 4. Borrell A.K., Mullet J.E., George-Jaeggli B., van Oosterom E.J., Hammer G.L., Klein P.E., et al. 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot., 65, 6251–6263. https://doi.org/10.1093/jxb/eru232
  • 5. Des Marais D.L., Hernandez K.M., Juenger T.E. 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst, 44, 5–29. https://doi.org/10.1146/annurev-ecolsys-110512-135806
  • 6. Eberhart S.A., Russell W.A. 1966. Stability Parameters for Comparing Varieties. Crop Sci., 6, 36–40. https://doi.org/10.2135/cropsci1966.011183x000600010011x
  • 7. El Naim A.M., Ibrahim M.I., Mohammed E.A., Elshiekh A.I. 2012. Evaluation of some local sorghum (Sorghum bicolor L. Moench) genotypes in rain-fed. Int J Plant Res, 2(1), 15–20. https://doi.org/10.5923/j.plant.20120201.03
  • 8. Ermantraut E.R., Prysiazhniuk O.I., Shevchenko I.L. 2007. Statistical analysis of agronomic study data in the Statistica 6.0 software suite. Kyiv: PolihrafKonsaltynh.
  • 9. FAO STAT Crops statistics. 2022. http://www.fao.org/faostat/en/#data/QC
  • 10. Fedorchuk M.I., Kokovixin S.V., Kalens`ka S.M., Raxmetov D.B., Fedorchuk V.G., Filipova I.M., Ptashy`ns`ka O.V., Kovalenko O.A., Drobit`ko A.V., Panfilova A.V. 2017. Scientific and theoretical foundations and practical aspects of the formation of ecologically safe technologies of cultivation and processing of sorghum in the steppe zone of Ukraine] Kherson.
  • 11. Fu T., Ko J., Wall G.W., Pinter P.J., Kimball B.A., Ottman M.J., et al. 2016. Simulation of climate change impacts on grain sorghum production grown under free air CO2 enrichment. Int. Agrophys., 30, 311–322. https://doi.org/10.1515/intag-2016-0007
  • 12. Hughes K.A., Burleson M.H., and Rodd F.H. 2002 Is phenotypic plasticity adaptive? in Biodemography of Fertility, Rodgers, J.L. and Kohler, H.C., Eds., Dordrecht, Netherlands: Kluwer, 23–42.
  • 13. Ndiaye M., Adam M., Ganyo K.K., Guissé A., Cissé N., Muller B. 2019. Genotype-environment interaction: trade-offs between the agronomic performance and stability of dual-purpose sorghum (Sorghum bicolor L. Moench) genotypes in Senegal. Agronomy, 9, 1–16. https://doi.org/10.3390/agronomy9120867
  • 14. Ndiaye M., Muller B., Ganyo K.K. et al. 2021. Phenotypic plasticity of plant traits contributing to grain and biomass yield of dual-purpose sorghum. Planta, 253, 82. https://doi.org/10.1007/s00425-021-03599-z
  • 15. Negin B., Moshelion M. 2016. The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct Plant Biol, 44, 107–118. https://doi.org/10.1071/FP16156
  • 16. Palmer A.R. 2012. Developmental plasticity and the origin of novel forms: unveiling cryptic genetic variation via “Use and Disuse.” J Exp Zoo B Mol Dev Evol, 318, 466–479. https://doi.org/10.1002/jez.b.21447
  • 17. Perrier L., Rouan L., Jaffuel S., Clément-Vidal A., Roques S., Soutiras A., Baptiste C., Bastianelli D., Fabre D., Dubois C., Pot D. and Luquet D. 2017. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level. Front. Plant Sci., 8, 1516. https://doi.org/10.3389/fpls.2017.01516
  • 18. Potgieter A.B., Lobell D.B., Hammer G.L., Jordan D.R., Davis P., Brider J. 2016. Yield trends under varying environmental conditions for sorghum and wheat across Australia. Agric. For. Meteorol. 228, 276–285. DOI: 10.1016/j.agrformet.2016.07.004
  • 19. Schlichting C.D. 2002. Phenotypic plasticity in plants. Plant Species Biol., 17, 85–88. https://doi.org/10.1046/j.1442-1984.2002.00083.x
  • 20. Semchenko M., Zobel K. 2005. The effect of breeding on allometry and phenotypic plasticity in four varieties of oat (Avena sativa L.). Field Crop Res., 93, 151–168.
  • 21. Semenova I.G. 2015. The spatial and temporal distribution of droughts in Ukraine under the future climate changes. Physical geography and geomorphology, 1(77), 144-150.
  • 22. Sinha S., Kumaravadivel N. 2016. Understanding genetic diversity of sorghum using quantitative traits. Scientifica (cairo), 2016, 3075023. https://doi.org/10.1155/2016/3075023
  • 23. State Statistics Service of Ukraine. 2022. www.ukrstat.gov.ua
  • 24. Sultan S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci, 5, 537–542. https://doi.org/10.1016/s1360-1385(00)01797-0
  • 25. Trouche G., Bastianelli D., Hamadou T.C., Chantereau J., Rami J.F., Pot D. 2014. Exploring the variability of a photoperiod-insensitive sorghum genetic panel for stem composition and related traits in temperate environments. Field Crops Res., 166, 72–81. https://doi.org/10.1016/j.fcr.2014.06.008
  • 26. Vadez V., Deshpande S.P., Kholova J., Hammer G.L., Borrell A.K., Talwar H.S., et al. 2011. Staygreen quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct. Plant Biol. 38, 553–566. https://doi.org/10.1071/FP11073
  • 27. Zegada-Lizarazu W., Monti A. 2012. Water uptake efficiency and above-and belowground biomass development of sweet sorghum and maize under different water regimes. Plant Soil., 351, 47–60. https://doi.org/10.1007/s11104-011-0928-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-849388e7-3d77-493f-bd59-38fbdc517fcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.