Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with a new integral transformation method called Ψ-Elzaki transform (PETM) in order to analyze some Ψ-fractional differential equations. The proposed method uses a modification of the Elzaki transform that is well adapted to deal with Ψ-fractional operators. To solve the nonlinear Ψ-fractional differential equations, we combine the PETM by an iterative method to overcome this nonlinearity. To validate the accuracy and efficiency of this approach, we compare the results of the discussed numerical examples with the exact solutions.
Czasopismo
Rocznik
Tom
Strony
571--578
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
autor
- Department of Mathematics, University of Jeddah, College of Science and Arts El Kamel, Jeddah, Saudi Arabia
autor
- University of Tunis El Manar, National Engineering School at Tunis, LAMSIN, B.P. 37, 1002, Tunis-Belvédère, Tunisia
autor
- Department of Mathematics, University of Jeddah, College of Science and Arts El Kamel, Jeddah, Saudi Arabia
Bibliografia
- 1. Chu Y-M, Rashid S, Karim S, Khalid A, Elagan S-K. Deterministic-stochastic analysis of fractional differential equations malnutrition model with random perturbations and crossover effects. Sci Rep. 2023;13(1):14824. https://doi: 10.1038/s41598-023-41861-4
- 2. Al-Qurashi M, Asif Q. U-A, Chu Y-M, Rashid S, Elagan SK. Complex-ity analysis and discrete fractional difference implementation of the Hindmarsh–Rose neuron system. Results in Physics. 2023;51 106627:2211-3797. https://doi.org/10.1016/j.rinp.2023.106627
- 3. Alsharidi AK, Rashid S, Elagan SK. Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis. AIMS Mathematics. 2023;8(8):19097-19120. https://doi.10.3934/math.2023975
- 4. Kanan M, Ullah H, Raja M-A. Z, Fiza M, Ullah H, Shoaib M., Akgül A, Asad J. Intelligent computing paradigm for second-grade fluid in a ro-tating frame in a fractal porous medium. Fractals. 2023;31(08): 2340175. https://doi.org/10.1142/S0218348X23401758
- 6. Rashid S, Noorb MA, Noor K. I. Caputo fractional derivatives and inequalities via preinvex stochastic processes, Published by Faculty of Sciences and Mathematics. University of Nis. Serbia. Filomat. 2023;37(19):6569–6584. https://doi.org/10.2298/FIL2319569R
- 7. Li W, Farooq U, Waqas H, Alharthi AM, Fatima N, Hassan AM, Muhammad T, Akgül A. Numerical simulations of Darcy-forchheimer flow of radiative hybrid nanofluid with Lobatto-IIIa scheme configured by a stretching surface. Case Studies in Thermal Engineering. 2023;49:103364:214-157X. https://doi.org/10.1016/j.csite.2023.103364
- 8. Faridi WA, Abu Bakar M, Akgül A, Abd El-Rahman M, El Din SM. Exact fractional soliton solutions of thin-film ferroelectric matrial equation by analytical approaches. Alexandria Engineering Journal. 2023;78:483-497. https://doi.org/10.1016/j.aej.2023.07.049
- 9. Ashraf R, Hussain S, Ashraf F, Akgül A, El Din SM. The extended Fan's sub-equation method and its application to nonlinear Schrö-dinger equation with saturable nonlinearity. Results in Physics. 2023;52:106755 https://doi.org/10.1016/j.rinp.2023.106755
- 10. Khan SA, Yasmin S, Waqas H, Az-Zo’bi EA, Alhushaybari A, Akgül A, Hassan A. M, Imran M. Entropy optimized Ferro-copper/blood based nanofluid flow between double stretchable disks: Application to brain dynamic. Alexandria Engineering Journal. 2023;79:296-307. https://doi.org/10.1016/j.aej.2023.08.017
- 11. Faridi WA, Abu Bakar M, Myrzakulova Z, Myrzakulov R, Akgül A, El Din S. M. The formation of solitary wave solutions and their propaga-tion for Kuralay equation. Results in Physics. 2023;52:106774. https://doi.org/10.1016/j.rinp.2023.106774
- 12. Rashid S, Karim S, Akgül A, Bariq A, Elagan SK. Novel insights for a nonlinear deterministic-stochastic class of fractional-order Lassa fe-ver model with varying kernels. Sci Rep 2023;13:15320. https://doi.org/10.1038/s41598-023-42106-0
- 13. Zhou S-S, Rashid S, Set E, Garba Ahmad A, Hamed YS. On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics. 2021;6(9):9154–9176. https://doi.org/1010.3934/math.2021532
- 14. Rashid S, Abouelmagd E. I, Sultana S, Chu Y-M. New developments in weighted 𝑛-fold type inequalities via discrete generalized ℏ̂-proportional fractional operators. Fractals. 2022; 30(02):2240056. https://doi.org/10.1142/S0218348X22400564
- 15. Rashid S, Abouelmagd E. I, Khalid A, Farooq FB, Chu Y-M. Some recent developments on dynamical ℏ̂-discrete fractional type inequal-ities in the frame of nonsingular and nonlocal kernels. Fractals. 2022; 30 (02):2240110. https://doi.org/10.1142/S0218348X22401107
- 16. Rashid S, Sultana S, Hammouch Z, Jarad F, Hamed YS. Novel aspects of discrete dynamical type inequalities within fractional oper-ators having generalized ℏ̂-discrete Mittag-Leffler kernels and appli-cation. Chaos. Solitons & Fractals. 2021;151:111204. https://doi.org/10.1016/j.chaos.2021.111204
- 17. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 2016;20(2):763--769. http://dx.doi.org/10.2298/TSCI160111018A
- 18. Chu Y-M, Rashid S, Asif Q. U-A, Abdalbagi M. On configuring new choatic behaviours for a variable fractional-order memristor-based circuit in terms of Mittag-Leffler kernel. Results in Physics. 2023;53: 106939. https://doi.org/10.1016/j.rinp.2023.106939
- 19. Rashid S, Khalid A, Bazighifan O, Oros G.I. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calcu-lus and Their Applications. Mathematics. 2021;9:1753. https://doi.org/10.3390/math9151753
- 20. Érdlyi A. An integral equation involving Legendre functions, J. Soc. Indust. Appl. Math. 1964;12(1):15-30. https://doi.org/10.1137/0112002
- 21. OSLR TJ. Leibniz rule for fractional derivatives and an application to infinite series. SlAM J. Appl. Math. 1970;18(3):658--674. https://doi.org/10.1137/0118059
- 22. Almeida R. A caputo fractional derivative of a function with respect to another function. Communications in Nonlinear Science and Numeri-cal Simulation. 2017;44:460--481. https://doi.org/10.1016/j.cnsns.2016.09.006
- 23. Almeida R. Further properties of Osler’s generalized fractional inte-grals and derivatives with respect to another function. Rocky Moun-tain J. Math. 2019;49(8):2459--2493. https://doi.org/10.1216/RMJ-2019-49-8-2459
- 24. Sousa JV da C, Oliveira EC de. On the Ψ-Hilfer Fractional Deriva-tive. Commun. Nonlinear Sci. Numer. Simul. 2018;60:72-91. https://doi.org/10.1016/j.cnsns.2018.01.005
- 25. Yang X-J. General fractional derivatives: theory, methods and appli-cations. CRC Press. New York 2019. https://doi.org/10.1201/9780429284083
- 26. Jarad F, Abdeljawad T. Generalized fractional derivatives and La-place transform. Discrete Contin. Dyn. Syst. 2020;13(3):709–722. https://doi.org/10.3934/dcdss.2020039
- 27. Singh Y, Gill V, Kundu S, Kumar D. On the Elzaki transform and its application in fractional free electron laser equation. Acta Univ. Sapi-entiae Mathem. 2019;11(2):419--429. https://doi.org/10.2478/ausm-2019-0030
- 28. Elzaki TM. The New Integral Transform (Elzaki Transform) funda-mental properties investigations and applications. GJPAM. 2011;7(1):57—64.
- 29. Almeida R, Malinowska AB, Odzijewicz T. An extension of the frac-tional gronwall inequality, in Conference on Non-Integer Order Calcu-lus and Its Applications. Springer. 2018:20-28. https://doi.org/10.1007/978-3-030-17344-9_2
- 30. Ali A, Minamoto T. A new numerical technique for investigating boundary value problems with Ψ-Caputo fractional operator. Journal of Applied Analysis & Computation. 2023;13(1):275--297. https://doi.org/10.11948/20220062
- 31. Sousa JV da C, Oliveira E C de. On the Ψ-fractional integral and applications. Comp. Appl. Math. 2019;38(4). https://doi.org/10.1007/s40314-019-0774-z
- 32. Bulut H, Baskonus HM, Bin Muhammad Belgacem F. The Analytical Solutions of Some Fractional Ordinary Differential Equations By Su-mudu Transform Method. Abs. Appl. Anal. 2013;2013(6):203875. https://doi.org/10.1155/2013/203875
- 33. Jafari H. A new general integral transform for solving integral equa-tions. J Adv Res. 2021;32:133--138. https://doi.org/10.1016/j.jare.2020.08.016
- 34. Elzaki MT, Chamekh M. Solving nonlinear fractional differential equations using a new decomposition method. Universal Journal of Applied Mathematics & Computation. 2018;6:27-35.
- 35. Fahad HM, Ur Rehman M, Fernandez A. On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 2021;1-20. https://doi.org/10.1002/mma.7772
- 36. Prabhakar TR. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971;19:7-15.
- 37. Pang D, Jiang W, Niazi AUK. Fractional derivatives of the general-ized Mittag-Leffler functions. Adv. Differ. Equ. 2018;2018:415. https://doi.org/10.1186/s13662-018-1855-9
- 38. Harikrishnan S, Shah K, Baleanu D, et al. Note on the solution of random differential equations via Ψ-Hilfer fractional derivative. Adv Differ Equ. 2018;2018:224. https://doi.org/10.1186/s13662-018-1678-8
- 39. Li C, Zeng FH. Numerical methods for fractional calculus. Chapman and Hall/CRC 2015. https://doi.org/10.1201/b18503
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-848a4294-e689-4b7b-8dc1-8def587796b3