PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Exact determinantions of maximal output admissible set for a class of semilinear discrete systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consider the semilinear system defined by {x(i+1)=Ax(i)+f(x(i)), i≥0 x(0)=x0∈Rn and the corresponding output signal y(i)=C x(i), i≥0, where A is a n×n matrix, C is a p x n matrix and f is a nonlinear function. An initial state x(0) is output admissible with respect to A, f, C and a constraint set Ω ⊂ Rp, if the output signal (y(i)i associated to our system satisfies the condition y(i) ∈ Ω, for every integer i≥0. The set of all possible such initial conditions is the maximal output admissible set Γ(Ω). In this paper we will define a new set that characterizes the maximal output set in various systems(controlled and uncontrolled systems) .Therefore, we propose an algorithmic approach that permits to verify if such set is finitely determined or not. The case of discrete delayed systems is taken into consideration as well. To illustrate our work, we give various numerical simulations.
Rocznik
Strony
523--552
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., wzory
Twórcy
  • Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik, Hassan II University Casablanca, BP 7955, Sidi Othman, Casablanca, Morocco
  • Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik, Hassan II University Casablanca, BP 7955, Sidi Othman, Casablanca, Morocco
  • Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik, Hassan II University Casablanca, BP 7955, Sidi Othman, Casablanca, Morocco
Bibliografia
  • [1] A. Feuer and M. Heymann: Admissible sets in linear feedback systems with bounded controls, International Journal of Control, 23(3) (1976), 381–392, DOI: 10.1080/00207177608922165.
  • [2] M. Cwikel and P.-O. Gutman: Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states, in Pror. 24th IEEE Conf. Derision Conrr. Fort Lauderdale. FL, Dec. 1985; also in IEEE Trans. Automat. Contr., 31(5) (1986), 457–459.
  • [3] E.G. Gilbert and K. Tin Tan: Linear Systems with State and Control constraints: The Theory and Application of Maximal Output Admissible Sets, IEEE Trans. Automat. Contr., 36(9) (1991), 1008–1020.
  • [4] F. Tahir and I. M. Jaimoukha: Robust Positively Invariant Sets for Linear Systems subject to model-uncertainty and disturbances, 4th IFAC Nonlinear Model Predictive Control Conference International Federation of Automatic Control Noordwijkerhout, NL, August 23-27, 2012.
  • [5] J. Bouyaghroumni, A. El Jai, and M. Rachik: Admissible disturbancesset for discrete perturbed systems, Int. J. Appl. Math. Comput. Sci., 11(2) (2001), 349–367.
  • [6] J. Osorio and H. R. Ossareh: A Stochastic Approach to Maximal Output Admissible Sets and Reference Governors, Control Technology and Applications (CCTA) 2018 IEEE Conference, pp. 704–709, 2018.
  • [7] K. Hirata and Y. Ohta: Exact determinations of the maximal output admissible set for a class of nonlinear systems, Automatica, 44(2) (2008), 526–533.
  • [8] I. Kolmanovsky and E. G. Gilbert: Maximal output admissible sets for discrete-time systems with disturbance inputs, Proceedings of 1995 American Control Conference-ACC’95, Vol. 3. IEEE, 1995.
  • [9] I. Kolmanovsky and E. G. Gilbert: Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, 4 (1998), 317–367.
  • [10] M. Rachik, E. Labriji, A. Abkari, and J. Bouyaghroumni: Infected discrete linear systems: On the admissible sources, Optimization, 48 (2000) 271–289.
  • [11] M. Rachik, A. Abdelhak, and J. Karrakchou: Discrete systems with delays in state, control and observation: The maximal output sets with state and control constraints. Optimization, 42 (1997), 169–183.
  • [12] M. S. Darup and M. Mönnigmann: Computation of the Largest Constraint Admissible Set for Linear Continuous-Time Systems with State and Input Constraints, Proceedings of the 19th World Congress The International Federation of Automatic ControlCape Town, South Africa. August 24–29, 2014.
  • [13] P. Kapasouri, M. Athans, and G. Stein: Design of feedback control systems for stable plants with saturating actuator, In: Proc. 27th Conf. Decision Contr., Austin, TX (1988), pp. 469–479.
  • [14] P. O. Gutman and M. Cwikel: An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states, IEEE Trans. Automat. Contr., 32(3) (1987), 251–254.
  • [15] P. O. Gutman and P. Hagander: A new design of constrained controllers for linear systems. IEEE Trans. Automat. Contr., 30(1) (1985), 22–23.
  • [16] S. S. Keerthi: Optimal feedback control of discrete-time systems with state-control constrains and general cost functions, Ph. D. dissertation, Computer Informat. Contr. Eng., Univ. Michigan, Ann Arbor, MI, 1986.
  • [17] S. S. Keerthi and E. G. Gilbet: Optimal infinite horizon feedback laws for a general class of constrained discrete-time systems, Stability and moving horizon approximations, J. Optimiz. Theory Appl., 57(2) (1988), 265–293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-848a0e1e-87fa-4c71-8f4e-a927cc258df3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.