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This paper presents a one-year forecast of European thermal coal spot prices by means of

time series analysis, using data from IHS McCloskey NW Europe Steam Coal marker (MCIS).

The main purpose was to achieve a good fit for the data using a quick and feasible method

and to establish the transformations that better suit this marker, together with an

affordable way for its validation.

Time series models were selected because the data showed an autocorrelation sys-

tematic pattern and also because the number of variables that influence European coal

prices is very large, so forecasting coal prices as a dependent variable makes necessary to

previously forecast the explanatory variables.

A second-order Autoregressive process AR(2) was selected based on the autocorrelation

and the partial autocorrelation function.

In order to determine if the results obtained are a good fit for the data, the possible

drivers that move the European thermal coal spot prices were taken into account, estab-

lishing a hypothesis in which they were divided into four categories: (1) energy side drivers,

that directly relates coal prices with other energy commodities like oil and natural gas; (2)

demand side drivers, that relates coal prices both with the Western World economy and

with emerging economies like China, in connection with the demand for electricity in

these economies; (3) commodity currency drivers, that have an influence for holders of

different commodity currencies in countries that export or import coal; and (4) supply side

drivers, involving the production costs, transportation, etc.

Finally, in order to analyse the time series model performance a Generalized Regression

Neural Network (GRNN) was used and its performance compared against the whole AR(2)

process. Empirical results obtained confirmed that there is no statistically significant
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difference between both methods. The GRNN analysis also allowed pointing out the main

drivers that move the European Thermal Coal Spot prices: crude oil, USD/CNY change and

supply side drivers.

Copyright © 2016 Central Mining Institute in Katowice. Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1 e EU gross energy inland consumption. Source:
(European Commission, 2013).

Source 2011 2030 (scenario)

Renewables 10% 18%

Solid fuels 17% 12%

Nuclear 14% 14%

Gas 24% 22%

Oil 35% 33%
1. Introduction

“Does energy production have to be based on fossil fuels?”

“Will coal continue to play an important role in the energy

mix?” “How much do we need coal to provide security of

supply in our electricity network?” These questions are

essential for the future planning of coal production and con-

sumption within the European Union.

According to the International Energy Agency (2015a) the

share of electricity from fossil fuels has not varied much since

1985, after the major introduction of nuclear capacity. The

electricity generation mix in the Organization for Economic

Co-operation and Development (OECD) in 2014 remained

dominated by fossil fuels (59%), mainly coal and gas, 32% and

24%, respectively.

Although Patzek and Croft (2010) forecasted the peak of

coal production from existing coalfields as quite imminent,

expecting a fall by 50%within the next 20 years, andMohr and

Evans (2009) forecasted something similar on an energy pro-

duction basis (between 2011 and 2047), it is indubitable that

coal will remain an important part of the world economy

during many years.

In January 2014 the European Commission published the

policy framework for climate and energy in the period from

2020 to 2030 (European Commission, 2014). Its main concern

was the reduction of greenhouse emissions while considering

at the same time the need for a competitive and secure energy

supply within the EU.

This need for a secure energy supply has changed favour-

ably the economic arguments for coal. Nevertheless, coal in-

dustry and coal-fired power generation within Europe are

pushed by several factors, which are not independent of each

other:

� Worldwide coal prices are low due to overproduction:

without climate policy low coal prices would drive elec-

tricity production from natural gas to coal (Van Ruijven &

van Vuuren, 2009), but this is not the scenario;

� A new variable is affecting the energy markets: the EU

emission trading scheme, which started in 2005, setting

caps for CO2 emissions from power plants that can be

increased only by the acquisition of emission allowances;

� Regulatory pressure to reduce greenhouse gas emissions

due to new air pollution limits will come into force in

2016;

� If the damage costs that result from fossil fuels combustion

are internalised into the electricity price, some renewable

technologiesmay be financially competitive in comparison

with electricity generation from coal (Owen, 2006); and,
� Coal production will lose state aids by 2018 in the European

Union and money-losing mines will have to close after

that.

The European Commission (2013), forecasted the changing

in Europe's energy mix till the 2030 scenario with a 30%

reduction in solid fuels and an 80% increase in renewables

(Table 1).

During the next years there will be a stable increase of

renewables share into the energy mix. Nevertheless, their

dominance will take decades to come according to BRG (2014).

Europe's domestic coal production plus hard coal imports

during the first semester of 2015 were 2.7% lower than the

previous year. The reduction in hard coal production was

3.6%, and the reduction in lignite production was 2.7%. Hard

coal imports were reduced 1.7% (Euracoal, 2015).

Thus, main pressure is supported by hard coal production.

Being Poland the biggest hard coal producer of the EU with a

68.3% share, it will be the country to suffer more from all the

factors that push the coal industry and coal-fired power

generation.

Therefore, it is really important to provide an effective

forecasting of energy resources prices in the context of energy

security as well as conducted energy policy and management

of the energy industry in countries where coal is an energy

main raw material and the primary energy source.

This paper presents a one-year forecast of European ther-

mal coal spot prices by means of time series analysis, using

data from IHS McCloskey NW Europe Steam Coal marker

(MCIS). Themain purposewas to achieve a good fit for the data

using a quick and feasible method and to establish the

transformations that better suit this marker, together with an

affordable way for its validation.

Also, in order to analyze the time series model perfor-

mance a Generalized Regression Neural Network (GRNN)

was used and its performance compared against the whole

process. Finally, this analysis also allowed pointing out the

main drivers that move the European Thermal Coal Spot

prices.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

This paper uses data from IHS McCloskey NW Europe Steam

Coal Marker (MCIS), a long-established coal price indicator

for NW Europe that is quoted since January 1991. This indi-

cator corresponds to steam coal spot prices in USD/t for

6000 kcal/kg and below 1% sulphur content, delivered with

Cost, Insurance and Freight (CIF) to NW European ports: ARA

(Antwerp, Rotterdam, and Amsterdam), France, Belgium, the

North Sea, Ireland and the United Kingdom. Prices that are

quoted on a Free On Board (FOB) basis are converted into CIF

figures using freight rates from the London shipbroking

community that provides service to the relevant delivery

routes.

The MCIS index is published every Friday on a weekly

basis. In order to undergo a one-year forecast, a monthly basis

was selected, using for each month the MCIS value of the first

Friday.

Another relevant index for Europe is the API 2, an average

of Argus CIF ARA that reflects the ARA CIF coal price in USD/t,

basis 6000 kcal/kg NAR (Net As Received), and the IHS

McCloskey NW European Steam Coal Marker. Although the

API 2 price is the primary price reference for physical and

over-the-counter (OTC) coal contracts in Northwest Europe, as

90% of the world's coal derivatives are priced against the

Argus/IHS McCloskey API 2 and API 4 indexes (API 4 is the

benchmark for coal exported out of Richards Bay in South

Africa), for this research the MCIS index was used due to data

availability.

In order to be able tomeasure the proximity of the one-year

prediction to its target, the European thermal coal spot prices

according to MCIS from January 1998 to July 2015 (Fig. 1) were

divided into two subsets. In first place, a training data subset

was defined from January 1998 till July 2014 and, in second

place, a validation data subset was defined with the data from

August 2014 till July 2015.

The same approach was applied by Crespo Cuaresma,

Hlouskova, Kossmeier, and Obersteiner (2004) who fore-

casted electricity spot-prices using data from the Leipzig

Power Exchange by means of linear univariate time-series

models. They divided the data set into an in-sample period

and an out-of-sample period composed by the remaining ob-

servations which they used to assess the forecasting abilities

of the different models.
Fig. 1 e The IHS McCloskey NW Europe Steam Coal marker

(MCIS) from 01/1998 till 07/2015. (Data: Courtesy of

CARBUNION).
Time series models were selected because the data

showed an autocorrelation systematic pattern, and the

number of variables that influence European coal prices is

very large. Thus, forecasting coal prices as a dependent

variable makes necessary to previously forecast the explan-

atory variables, a work that might be even more demanding

than forecasting coal prices themselves (Behmiri & Manso,

2013).

The methodology presented by Garcı́a-Martos, Rodrı́guez,

and S�anchez (2013), which was derived from the ARIMA

methodology for the study of time series analysis developed

initially by Box and Jenkins (1976), was used:

1. Checking variance stationarity in order to decide on using a

logarithmic transformation.

2. Applying one difference (or in some particular cases, even

two differences) when the mean is not constant over time,

together with the selection of the most appropriate period

for the deseasonalization.

3. After obtaining data stationarity, the adequate model

should be selected together with its order based on the

patterns presented by the autocorrelation Function (ACF)

and the Partial autocorrelation Function (PACF). The ACF

will give hints about the more suitable time series model

and the PACF will allow identifying the order of the

model.

4. Then the goodness of the fit with the selected model is

estimated by means of Maximum Likelihood Estimation

(Aldrich, 1997), Akaike Information Criterion (Sugiura,

1978) or Bayesian Information Criterion (Sawa, 1978),

and tested against alternative models that may also be

suitable.

5. Once the goodness of the model has been estimated,

then the hypotheses assumed for the error term must be

checked in the diagnostic checking stage. This can be

done by applying the LjungeBox test (S�anchez Lasheras,

de Cos Juez, Su�arez S�anchez, Krzemie�n, & Riesgo

Fern�andez, 2015; Ljung & Box, 1978) to check the inde-

pendence assumption, and the KolmogoroveSmirnov

test (Lilliefors, 1967) for testing the normality assump-

tion. If the independence and normality assumptions

are not rejected then the estimated model can be used to

compute forecasts for the price. Otherwise, an alterna-

tive model should be estimated, going back to Steps 3, 4

and 5, subsequently.

@RISK 6, fromPalisade Corporation (Ithaca, NewYork), was

used for the simulation of the time series models.

The performance of the models obtained in this research

was analysed by means of the Root Mean Square Error (RMSE)

and Mean Percentage Absolute Error (MAPE). Both metrics

help to determine if a particular fitted distribution is a good fit

for the data.

The RMSE can be expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðAt � FtÞ2
n

s
(1)

where: At is the actual value, Ft is the forecasted value and n is

the number of forecasted values.

http://dx.doi.org/10.1016/j.jsm.2016.04.002
http://dx.doi.org/10.1016/j.jsm.2016.04.002
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The equation of MAPE is:

MAPE ¼ 1

n

Xn
t¼1

����At � Ft

At

���� (2)

Variables have the samemeaning as in the equation above.

Also the results were evaluated by means of the Forecast

Error (FE), using the formula (3).

Forecast errorðFEÞ ¼
�ðactual� predictedÞ

actual

�
(3)

In order to make a comparative analysis of the time series

model performance, Generalized Regression Neural Networks

(GRNN) were selected, as they can be used as nonlinear

regression models, generalizing the stationary and univariate

models used in econometrics (Panella, Barcellona, &

D'Ecclesia, 2012). GRNN are a kind of probabilistic neural net-

works that are often used for function approximation. They

were put forward by Specht (1990, 1991) and covered in

Masters (1995). They present clear advantages for our work as

they can be trained fast and they do not require topology

specifications such as the number of hidden layers and nodes.

NeuralTools 6, from Palisade Corporation (Ithaca, New

York), was used for the training and validation of the GRNN.

Finally, StatTools6, from Palisade Corporation (Ithaca, New

York), was used to develop the one-way ANOVA test (Lix,

Keselman, & Keselman, 1996), together with other statistical

calculations.
Fig. 3 e Transformed training data subset.
3. Time series analysis

The autocorrelation function (ACF) plot of the training data

subset is presented in Fig. 2. Due to its shape it looks like the

training data subset is non-stationary.

In order to confirm non-stationarity, a Dickey-Fuller test

(Dickey & Fuller, 1979) was performed, and a p value of 0.0651

was obtained. So the training data subset is non-stationary.

Thus first it was necessary to find the appropriate trans-

formations to the time series in order to produce stationarity.

A logarithmic transformation was applied to the price,

p ¼ logðPÞ, in order to attain a more stable variance as in the

work by Weron and Misiorek (2008). Moreover, Fern�andez

Benitez (2003), in his study about coal power plants, stated

that coal import prices have a cyclic behaviour with
Fig. 2 e Autocorrelation function (ACF) of the training data

subset.
maximum and minimum values every two or three years.

Under this consideration, first order and second order differ-

encing deseasonalization and also additive deseasonalization

were applied for different periods. The best result was given

by the second order deseasonalization with a 24 months

period.

The transformed training data subset was changed as

presented in Fig. 3.

Fig. 4 shows the new autocorrelation function (ACF). Due to

its alternating between positive and negative values, while

decaying to zero, the indicated time series model should be

the autoregressive (AR) one.

To identify the order of the autoregressive model, the

partial autocorrelation plot was used (Fig. 5), showing that a

second order autoregressive process AR(2) will be appropriate

as the two first lag values are statistically significant.

Nevertheless, confronting several time series processes

that were used in order to try different fits of the data (Brow-

nian motion with mean reversion, autoregressive moving

average, autoregressive conditional heteroskedasticity and

generalized autoregressive conditional heteroskedasticity),

the second-order autoregressive process AR(2) was the one

with a maximum likelihood estimates of the parameters ac-

cording the Akaike Information Criterion (AIC). With the

Bayesian Information Criterion (BIC) the ranking was

different, but AR(2) was still the one with the lowest values,
Fig. 4 e Autocorrelation function (ACF) of the training data

subset after transformation.

http://dx.doi.org/10.1016/j.jsm.2016.04.002
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Table 2 e Akaike Information Criterion results and
Bayesian Information Criterion results for different time
series processes.

Process AIC BIC

Second-order autoregressive AR(2) �21.4288 �9.6336

First-order autoregressive moving

average

ARMA(1,1) �18.1037 �6.3085

Brownian motion with mean

reversion

BMMR �4.5513 7.2439

First-order autoregressive moving

average

AR(1) �3.0179 5.8707

Second-order moving average MA(2) 119.3721 131.1672

First-order moving average MA(1) 211.1737 211.1737

First-order autoregressive

conditional heteroskedasticity

ARCH(1) 318.9009 327.7895

Generalized ARCH GARCH(1,1) 320.9101 332.7053

Fig. 6 e Time series forecasted prices versus validation

data subset.

Fig. 5 e Partial autocorrelation function (PACF) of the

training data subset after transformation.
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something that explains the closest match between the

training data subset and the time series process (Table 2).

The Ljung-Box statistic was used to check the adequacy of

the model with an alfa level of 5%. The p value obtained for the

Ljung-Box statistic was 0.9821, and therefore the null hypoth-

esis that the residuals have no correlation cannot be rejected.

Also, the normality was checked through the Kolmogor-

oveSmirnov test and confirmed with a p value of 0.9961.

Fig. 6 presents the time series prediction for a 24 months

period, with the forecasted prices (24 months), and the vali-

dation data subset (12 first months).

From a visual perspective it can be observed that the

forecasted prices are capable of modelling the validation data

subset with quite a good detail, being able to reproduce the

fluctuations of the original price curve with high detail.

The correlation coefficient of the validation data subset

and those predicted with the second order autoregressive

AR(2) process gave a value of 0.808. The RMSE obtained for the

forecasted prices was of 5.16330462 while the MAPE was of

6.60%. Evaluating the results bymeans of the forecast error, an

average value of 0.0009697 is obtained, with a minimum of

�0.16244228 and a maximum of 0.1353705.

S�anchez Lasheras et al. (2015) used an autoregressive in-

tegrated moving average (ARIMA) model and two different

kinds of artificial neural networks models (Elman and multi-

layer perceptron) in order to forecast the COMEX copper spot

price for one month.
The RMSE and MAPE values obtained with our model are

similar to the ones obtained by them with the ARIMA model

and the Elman recurrent neural network, and higher than the

values they obtained with the multilayer perceptron neural

network.

Baumeister and Kilian (2012) while forecasting the real

price of oil, determined that ARMA models were not as accu-

rate as recursive vector autoregressive (VAR) models in the

short run and that they lack directional accuracy. But for ho-

rizons ranging from 6 to 12 months they may produce lower

mean squared prediction error (MSPE).
4. Neural networks analysis

In order to determine if the results obtained are a good fit for

the data, a neural network analysis was also developed, taking

into account the drivers that move the European thermal coal

spot prices, to be able to accomplish a comparative analysis of

the time series model performance.

Generalized Regression Neural Networks (GRNN) were

selected and, trying to obtain better RMSE and MAPE values

than the ones obtained with the second-order autoregressive

process AR(2), each monthly value from the validation data

subset was forecasted considering the values of the drivers

including the month to be forecasted.

A hypothesis was established following Groen and Presenti

(2010) that revisited the performance of commodity currency

drivers together with supply and demand drivers across

developed and developing countries in the forecasting of

commodity prices. Moreover, Gargano and Timmermann

(2014) found that commodity prices forecasting are closely

linked to economic cycles, which can be represented by both

supply and demand drivers. Commodity currency drivers will

link supply and demand drivers from countries with different

stages and rates of development. Thus, drivers were divided

into four categories: (1) energy side drivers, that directly re-

lates coal prices with other energy commodities like oil and

natural gas; (2) demand side drivers, that relates coal prices

both with the Western World economy and with emerging

economies like China, in connection with the demand for

electricity in these economies; (3) commodity currency

drivers, that have an influence for holders of different

http://dx.doi.org/10.1016/j.jsm.2016.04.002
http://dx.doi.org/10.1016/j.jsm.2016.04.002


Fig. 7 e Neural network forecasted prices versus validation

data subset.
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commodity currencies in countries that export or import coal;

and (4) supply side drivers, involving the production costs,

transportation, etc.

Other drivers such as temperature events and institutional

design issues, described in the work by Alberola, Chevallier,

and Ch�eze (2008), were not considered because they are very

uncertain and stochastic, with strong nonlinear features,

bringing a high degree of complexity and difficulty in order to

build a model (Feng, Zhao, Chen, Tian, & Wang, 2009).

The markers selected to represent the drivers within the

different categories were the following ones:

1 For representing the energy side drivers two indexes, that

reflect oil and natural gas prices, were selected: the ICE

Brent Crude Oil Front Month Futures Index (quoted in USD

per 10,000 mmBtu, this is, million British thermal units);

and the Henry Hub Natural Gas Front Month Futures Index

(quoted in USD per mmBtu), as front month contracts are

generally themost liquid of futures contracts in addition to

having the smallest spread between the futures price and

the spot price on the underlying commodity. In fact, the

weights used in theWorld Bank Energy Price Index are: coal

(4.7%), crude oil (84.6%) and natural gas (10.8%) (The World

Bank, 2015).

2 For representing the demand side drivers two stockmarket

indexes were selected, one representing the western

market and the other representing the eastern market: the

NYSE Composite, that covers all common stock listed on

the New York Stock Exchange, and the Shanghai Stock

Exchange (SSE) Composite Index, a capitalization-weighted

index that tracks the daily price performance of all A-

shares and B-shares listed on the Shanghai Stock Ex-

change. NYSE was selected instead of Euro Stoxx 50

(STOXX50E), which may be a good representation of

Europe's economy, due to the facts that the MCIS index is

quoted in USD, and that the United States of America is the

second major coal producer immediately after China

(International Energy Agency, 2015b). In this way, the need

to consider within the commodity currency drivers the

exchange rate between EUR and USD was eliminated,

simplifying our model.

3 As China is the major coal producer in the world with an

estimated contribution of 46,7% in2014 (International Energy

Agency, 2015b), the exchange rate between USD and the

renminbi (CNY), the official currency of the People's Republic
of China, was used to reflect the commodity currency driver.

4 Finally, for reflecting the influence of the supply side

drivers, the use of the Australian thermal coal price index

was considered in first place (FOB piers, Newcastle/Port

Kembla; 6300 kcal per kilogram, less than 0.8% sulphur and

13% ash). Nevertheless, it was checked that because of the

higher degree of correlation between the two variables

(0.899), even the Australian thermal coal itself was a better

forecast than any other one. This is why finally supply side

drivers were considered by introducing the very MCIS

index with the following transformation: xt ¼ xt�1. This is,

production costs, transportation, etc., were represented by

the historical data of the very European thermal coal spot

prices, an arrangement quite typical within neural network

analysis (S�anchez Lasheras et al., 2015).
Using as the first data subset values from January 2004 till

August 2014 (December 2003 till July 2014 in the case of

MCISt�1), and forecasting the European thermal coal spot price

month by month, the best results of the neural network by

means of RMSD and MAPE were given by the combination of

only three of the drivers: MCISt�1, Crude oil and USD/CNY

exchange. The accuracy of the prediction gave a RMSE value of

4.5654 and a MAPE of 5.70%. Although this may look contra-

dictory, Clark and West (2007) described that the mean

squared prediction error (MSPE) from a parsimonious model

will be smaller than that of a larger model due to the intro-

duction of noise into the forecast.

Fig. 7 presents the neural network forecasted prices versus

the validation data subset.

The relative variable impacts for the different forecasted

months that indicate how much a variable influences the

MCIS index were fluctuating in the different months, being

MCISt�1 and the USD/CNY exchange the variables with the

biggest impact on the forecast.

Evaluating the results of the forecast error an average value

of �0.054261968 was obtained, with a minimum of

�0.184730064 and a maximum of 0.016474187. These results

are, as an average, worse than the ones obtained by the time

series analysis. But they are quite logical, as the time series

forecasted prices fluctuate around the validation data subset

while the GRNN forecasted prices tended almost always over

the validation data subset.

Finally, in order to detect if the differences between the two

methods applied are statistically significant, a one-way Anal-

ysis of Variance (ANOVA) test was carried out at a 95% confi-

dence level. The comparison of the AR(2) and the GRNN mean

forecast errors was found to be non-significant (p ¼ 0,0643), so

in this specific case a one year forecast on amonthly basis using

a GRNN does not improve significantly the results obtained by

the time series analysis over the same twelve months.
5. Conclusions

According to the empirical results achieved it is possible to say

that the performance of the Generalized Regression Neural

Networks model on a monthly basis improves the one ach-

ieved by means of the time series analysis on a yearly basis

when they are compared in terms of RMSE and MAPE.

http://dx.doi.org/10.1016/j.jsm.2016.04.002
http://dx.doi.org/10.1016/j.jsm.2016.04.002
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Nevertheless, the differences between them are not sta-

tistically significant according to the ANOVA test.

In the case of the time series model, the forecasted prices

are able to reproduce the fluctuations of the original price

curve with high detail, while with the GRNN the forecasted

prices tend almost always over the validation data subset, and

they do not reproduce so well the fluctuations. This is why we

can affirm that the time series analysis can be an adequate

method when trying to forecast one-year prices evolution.

Under this premise, European thermal coal spot price is ex-

pected at 70 USD/t by summer 2016.

Su�arez S�anchez, Krzemie�n, Riesgo Fern�andez, Iglesias

Rodrı́guez, S�anchez Lasheras, and de Cos Juez (2015) un-

dergo a five year forecasting of tungsten prices through an

auto-regressive integrated moving average (ARIMA) model

and a feedforward artificial neural network model. In both

cases the models returned the average of the time series from

the twelve forecasted month.

When a self-exciting threshold auto regressive (SETAR)

model was applied something similar happened but after a

longer period of time (five years).

Thus, for a long-term forecasting, as in the case of having

to estimate an average price in order to calculate the Net

Present Value (NPV) within a feasibility study (a period nor-

mally estimated between five and ten years), time series

analysis will give up to one year of quite reliable further in-

formation. From this point, the prices average or their ten-

dency (if moderate) from the last stable period will be a

reasonable assumption, as requested by the different stan-

dards for reporting of exploration results, mineral resources

and reserves: the PERC code (Pan European Reserves and

Resources Reporting Committee, 2013), and the JORC code

(Joint Ore Reserves Committee, 2012).

Regarding the drivers that move the European thermal

coal spot prices, only three of them were found as really

representatives: crude oil prices, the exchange rate be-

tween USD and the renminbi (CNY) and, of course, the

supply side drivers that involve production costs, trans-

portation, etc.

It was quite a surprise that both the NYSE Composite and

the Shanghai Stock Exchange Composite Index were not

considered as significant by the GRNN. The explanation of

this fact may be that crude oil prices and supply side drivers

already reflect any economy fluctuation both in Western and

Eastern economies. Moreover, the influence showed by the

exchange rate between USD and the renminbi (CNY) can be

explained by the statement of the International Energy

Agency (2013): “In the end, it is all about China”, as China

has an absolute dominance over the coal markets, being the

growth engine of global coal demand. Since 2009, the

development of European coal prices has been determined

by the rise of coal imports to China and to Asia in general,

accounting in 2014 for 72% of the world's trading volume

(BRG, 2014).
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