PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical aspects of Bragg curve of therapeutic oxygen-ion beam: Monte Carlo simulation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Oxygen (16O) ion beams have been recommended for cancer treatment due to its physical Bragg curve feature and biological property. The goal of this research is to use Monte Carlo simulation to analyze the physical features of the 16O Bragg curve in water and tissue. Material and methods: In order to determine the benefits and drawbacks of ion beam therapy, Monte Carlo simulation (PHITS code) was used to investigate the interaction and dose deposition properties of oxygen ions beam in water and human tissue medium. A benchmark study for the depth–dose distribution of a 16O ion beam in a water phantom was established using the PHITS code. Bragg's peak location of 16O ions in water was simulated using the effect of water's mean ionization potential. The contribution of secondary particles produced by nuclear fragmentation to the total dose has been calculated. The depth and radial dose profiles of 16O, 12C, 4He, and 1H beams were compared. Results: It was shown that PHITS accurately reproduces the measured Bragg curves. The mean ionization potential of water was estimated. It has been found that secondary particles contribute 10% behind the Bragg peak for 16O energy of 300 MeV/u. The comparison of the depth and radial dose profiles of 16O, 12C, 4He, and 1H beams, shows clearly, that the oxygen beam has the greater deposited dose at Bragg peak and the minor lateral deflection. Conclusions: The combination of these physical characteristics with radio-biological ones in the case of resistant organs located behind the tumor volume, leads to the conclusion that the 16O ion beams can be used to treat deep-seated hypoxic tumors.
Rocznik
Strony
160--168
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Radiation Physics and Applications Laboratory, Mohammed Seddik Benyahia University, Jijel, Algeria
autor
  • Radiation Physics and Applications Laboratory, Mohammed Seddik Benyahia University, Jijel, Algeria
  • Radiation Physics and Applications Laboratory, Mohammed Seddik Benyahia University, Jijel, Algeria
  • Laboratory of Dosing, Analysis and Characterization in High Resolution (DAC), Ferhat Abbas Setif1 University, Algeria
Bibliografia
  • 1. Raj V, Rai A, Sharma S, et al. Role of synchrotron radiation in cancer: A review on techniques and applications. J Anal Pharm Res. 2018;7(2):175-180. https://doi.org/10.15406/japlr.2018.07.00221
  • 2. Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. https://doi.org/10.7150/ijms.3635
  • 3. Scaife JE, Barnett GC, Noble DJ, et al. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. The British Journal of Radiology. 2015;88:1051. https://doi.org/10.1259/bjr.20150172
  • 4. Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys. 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383
  • 5. Ugo A, Gerhard K. Radiotherapy with beams of carbon ions. Rep Prog Phys. 2005;68(8):1861-1882. https://doi.org/10.1088/0034-4885/68/8/R04
  • 6. Kantemiris I, Karaiskos P, Papagiannis P, et al. Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak. Med Phys. 2011;38(12):6585-6591. https://doi.org/10.1118/1.3662911
  • 7. Hamdi DH, Barbieri S, Chevalier F, et al. In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact. BMC Cancer. 2015;15:579. https://doi.org/10.1186/s12885-015-1590-5
  • 8. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017;14(8):483-495. https://doi.org/10.1038/nrclinonc.2017.30
  • 9. Hamdi DH, Chevalier F, Groetz JG, et al. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions. Int J Radiat Oncol Biol Phys. 2016;95(1):139-146, https://doi.org/10.1016/j.ijrobp.2016.02.014
  • 10. Particle Therapy Facilities in Clinical Operation. Accessed: January 2022. [Online]. Avalable: https://www.ptcog.ch/index.php/facilities-in-operation
  • 11. Lysakovski P, Ferrari A, Tessonnier T, et al. Development and Benchmarking of a Monte Carlo Dose Engine for Proton Radiation Therapy. Front Phys. 2021;9:741453. https://doi.org/10.3389/fphy.2021.741453
  • 12. Sokol O, Scifoni E, Tinganelli W, et al. Oxygen beams for therapy: advanced biological treatment planning and experimental verification. Phys Med Biol. 2019;62(19):7798-7813. https://doi.org/10.1088/1361-6560/aa88a0
  • 13. Kurz K, Mairani A, Parodi P. First experimental based characterization of oxygen ion beam depth dose distributions at the Heidelberg ion beam therapy center. Phys Med Biol. 2012;57(15):5017-5034. https://doi.org/10.1088/0031-9155/57/15/5017
  • 14. Sato T, Kase Y, Watanabe R, et al. Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model. Radiation Research. 2009;171(1):107-117. https://doi.org/10.1667/RR1510.1
  • 15. Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. Journal of Nuclear Science and Technology. 2017;54(5):617-635. https://doi.org/10.1080/00223131.2017.1297742
  • 16. Iida K, Kohama A, Oyamatsu K. Formula for Proton-Nucleus Reaction Cross Section at Intermediate Energies and Its Application. J Phys Soc Jpn. 2007;76(4):04420. https://doi.org/10.1143/JPSJ.76.044201
  • 17. Ogawa T, Sato T, Hashimoto S, et al. Energy-dependent fragmentation cross sections of relativistic C12. Phys Rev C. 2015;92:024614. https://doi.org/10.1103/PhysRevC.92.029904
  • 18. Furihata M, Statistical analysis of light fragment production from medium energy proton-induced reactions. Nucl Instrum Methods Phys Res B. 2000;171:251-258. https://doi.org/10.1016/S0168-583X(00)00332-3
  • 19. Puchalska M, Tessonnier T, Parodi K, et al. Benchmarking of PHITS for Carbon Ion Therapy. Int J Part Ther. 2018;4(3):48-55. https://doi.org/10.14338/IJPT-17-00029.1
  • 20. Parisi A, Nascimento LF, Van Hoey O, et al. Low temperature thermoluminescence anomaly of LiF:Mg,Cu,P radiation detectors exposed to 1H and 4He ion. Radiation Measurements. 2018;119:155-165. https://doi.org/10.1016/j.radmeas.2018.10.008
  • 21. Soltani-Nabipour J, Sardari D, Cata-Danil G. Sensitivity of the bragg peak curve to the average ionization potential of the stopping medium. Rom Jurn of Phys. 2009;54(3-4):321-330
  • 22. Resch, AF, Fuchs, H, Georg D. Benchmarking GATE/Geant4 for 16O ion beam therapy. Phys Med Biol. 2017;62(18):N474-N484. https://doi.org/10.1088/1361-6560/aa807e
  • 23. MacCabee HD, Ritter MA. Fragmentation of High-Energy Oxygen-Ion Beams in Water. Radiation Research. 1974;60(3):409-421. https://doi.org/10.2307/3574021
  • 24. Zeitlin C, Miller J, Guetersloh S, et al. Fragmentation of 14N, 16O, 20Ne, and 24Mg nuclei at 290 to 1000 MeV/nucleon. Physical Review C. 2011;83(3):034909. https://doi.org/10.1103/PhysRevC.83.034909
  • 25. Rucinski A, Traini, G, Roldan, AB, et al. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles. Physica Medica. 2019;64:45-53. https://doi.org/10.1016/j.ejmp.2019.06.001
  • 26. Boukhellout A, Ounoughi N, Kharfi F. Monte-Carlo simulation using PHITS of secondary neutrons produced in-patient during 16O ion therapy. Radiat Prot Dosimetry. 2022;198(1-2):31-36. https://doi.org/10.1093/rpd/ncab188
  • 27. Ogawa T, Sato S, Hashimoto S, et al. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model. Nucl Instrum Methods Phys Res A. 2013;723:36-46. https://doi.org/10.1016/j.nima.2013.04.078
  • 28. Grogg K, Alpert NM, Zhu X, et al. Mapping 15O production rate for proton therapy verification. Int J Radiat Oncol Biol Phys. 2015;92(2):453-459. https://doi.org/10.1016/j.ijrobp.2015.01.023
  • 29. Ying C K, Bolst D, Rosenfeld A, et al. Characterization of the mixed radiation field produced by carbon and oxygen ion beams of therapeutic energy: A Monte Carlo simulation study. J Med Phys. 2019;44:263-269. https://www.jmp.org.in/text.asp?2019/44/4/263/272671
  • 30. Grzanka L, Ardenfors O, Bassler N. Monte Carlo simulations of spatial let distributions in clinical proton beams. Radiation Protection Dosimetry. 2018;180(1-4):296-299 https://doi.org/10.1093/rpd/ncx272
  • 31. Tinganelli W, Durante M, Hirayama R, et al. Kill-painting of hypoxic tumours in charged particle therapy. Sci Rep. 2015;5:17016. https://doi.org/10.1038/srep17016
  • 32. ICRU, 1989. Tissue substitutes in radiation dosimetry and measurement. Report 44, International Commission on Radiation Units and Measurements, Bethesda, MD, USA
  • 33. Tommasino F, Scifoni E, Durante M. New ions for therapy. International Journal of Particle Therapy. 2016;2(3):428-438. https://doi.org/10.14338/IJPT-15-00027.1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-848320d5-e52d-4ab1-8514-c2bc8ff67770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.