Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Heterotrophic nanoflagellates (HNF) are key players in marine microbial food webs, but their distribution remains poorly understood. We investigated abundance patterns of eleven HNF lineages in the Baltic Proper from May to September 2021 using Catalysed Reporter Deposition-Fluorescence In Situ Hybridisation (CARD-FISH). HNF were most abundant in surface waters, where they reached above 12,000 cells ml−1, in May. Median cell size varied between 3.3–4.1 μm. CRY-1 cryptophytes, Marine Stramenopiles from MAST-2 lineage, and Kathablepharidacea dominated the HNF community in surface and suboxic/sulphidic waters below the halocline. Our results make an important contribution to the understanding of HNF ecology in the Baltic Sea.
Czasopismo
Rocznik
Tom
Strony
Art. no. 67101
Opis fizyczny
Bibliogr. 66 poz., map., rys., tab., wykr.
Twórcy
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
- Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
- 1. Amann, R., Fuchs, B.M., 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339-348. https://doi.org/10.1038/nrmicro1888
- 2. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A., 1990. Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919-1925. https://doi.org/10.1128/aem.56.6.1919-1925.1990
- 3. Ameryk, A., Podgorska, B., Witek, Z., 2005. The dependence between bacterial production and environmental conditions in the Gulf of Gdansk. Oceanologia 47, 27-45.
- 4. Anderson, R., Winter, C., Jürgens, K., 2012. Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic–anoxic interfaces. Mar. Ecol. Prog. Ser. 467, 1-14. https://doi.org/10.3354/meps10001
- 5. Anderson, R., Wylezich, C., Glaubitz, S., Labrenz, M., Jurgens, K., 2013. Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ. Microbiol. 15, 1580-1594. https://doi.org/10.1111/1462-2920.12078
- 6. Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L., Thingsted, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257-263.
- 7. Azam, F., Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nature Rev. Microbiol. 5, 782-791. https://doi.org/10.1038/nrmicro1747
- 8. Behrens, S., Ruhland, C., Inacio, J., Huber, H., Fonseca, A., Spencer-Martins, I., Fuchs, B.M., 2003. In Situ Accessibility of Small-Subunit rRNA of Members of the Domains Bacteria, Archaea and Eucarya to Cy3-Labeled Oligonucleotide Probes. Appl. Environ. Microbiol. 69, 1748-1758. https://doi.org/10.1128/AEM.69.3.1748-1758.2003
- 9. Bennke, C.M., Reintjes, G., Schattenhofer, M., Ellrott, A., Wulf, J., Zeder, M., Fuchs, B.M., 2016. Modification of a High-Throughput Automatic Microbial Cell Enumeration System for Shipboard Analyses. Appl. Environ. Microbiol. 82, 3289-3296. https://doi.org/10.1128/aem.03931-15
- 10. Bergen, B., Herlemann, D.P., Labrenz, M., Jürgens, K., 2014. Distribution of the verrucomicrobial clade Spartobacteria along a salinity gradient in the Baltic Sea. Environ. Microbiol. Rep. 6, 625-630. https://doi.org/10.1111/1758-2229.12178
- 11. Bochdansky, A., Clouse, M., Herndl, G., 2017. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362-373. https://doi.org/10.1038/ismej.2016.113
- 12. Bochdansky, A.B., Huang, L., 2010. Re-evaluation of the EUK516 probe for the domain Eukarya results in a suitable probe for the detection of kinetoplastids, an important group of parasitic and free-living flagellates. J. Eukaryot. Microbiol. 57, 229-235. https://doi.org/10.1111/j.1550-7408.2010.00470.x
- 13. Coleman, A.W., 1980. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol. Oceanogr. 25, 948-951. https://doi.org/10.4319/lo.1980.25.5.0948
- 14. de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., Lima-Mendez, G., Lukes, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., Karsenti, E., Tara Oceans, C., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. https://doi.org/10.1126/science.1261605
- 15. del Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L.F., Nenarokov, S., Massana, R., Guillou, L., Simpson, A., Berney, C., de Vargas, C., Brown, M.W., Keeling, P.J., Wegener Parfrey, L., 2018. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 16, e2005849. https://doi.org/10.1371/journal.pbio.2005849
- 16. Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., Bowler, C., Lukeš, J., Horák, A., 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060-3065. https://doi.org/10.1016/j.cub.2016.09.031
- 17. Flegontova, O., Flegontov, P., Malviya, S., Poulain, J., de Vargas, C., Bowler, C., Lukeš, J., Horák, A., 2018. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 20, 878-889. https://doi.org/10.1111/1462-2920.14034
- 18. Giner, C.R., Forn, I., Romac, S., Logares, R., de Vargas, C., Massana, R., 2016. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl. Environ. Microbiol. 82, 4757-4766. https://doi.org/10.1128/aem.00560-16
- 19. Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods for sea water analysis. Verlag Chemie GmbH, 419 pp.
- 20. Grujčić, V., Nuy, J.K., Salcher, M.M., Shabarova, T., Kasalický, V., Boenigk, J., Jensen, M., Šimek, K., 2018. Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 12, 1668-1681. https://doi.org/10.1038/s41396-018-0057-5
- 21. Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W., Lara, E., Le Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. TheProtistRibosomalReferencedatabase(PR2): acatalogofunicellulareukaryoteSmallSub-UnitrRNAs equenceswithcuratedtaxonomy. Nucleic Acids Res. 41, D597-D604. https://doi.org/10.1093/nar/gks1160
- 22. Herlemann, D.P.R., Labrenz, M., Juergens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571-1579. https://doi.org/10.1038/ismej.2011.41
- 23. Herlemann, D.P.R., Woelk, J., Labrenz, M., Jürgens, K., 2014. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Syst. Appl. Microbiol. 37, 601-604. https://doi.org/10.1016/j.syapm.2014.09.002
- 24. Hu, Y.O.O., Karlson, B., Charvet, S., Andersson, A.F., 2016. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7, 679. https://doi.org/10.3389/fmicb.2016.00679
- 25. Jürgens, K., Massana, R., 2008. Protistan grazing in marine bacterioplankton. [In:] Kirchman, D.L. (Ed.), Microbial Ecology of the Oceans. Wiley-Blackwell, New Jersey, 383-441.
- 26. Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT on line service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20, 1160-1166. https://doi.org/10.1093/bib/bbx108
- 27. Kavagutti, V.S., Bulzu, P.-A., Chiriac, C.M., Salcher, M.M., Mukherjee, I., Shabarova, T., Grujčić, V., Mehrshad, M., Kasalický, V., Andrei, A.-S., Jezberová, J., Seďa, J., Rychtecký, P., Znachor, P., Šimek, K., Ghai, R., 2023. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 11, 15. https://doi.org/10.1186/s40168-022-01451-4
- 28. Lapoussière, A., Michel, C., Starr, M., Gosselin, M., Poulin, M., 2011. Role of free-living and particle-attached bacteria in the recycling and export of organic material in the Hudson Bay system. J. Marine Syst. 88, 434-445. https://doi.org/10.1016/j.jmarsys.2010.12.003
- 29. Lim, E.L., Dennett, M.R., Caron, D.A., 1999. The ecology of araphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol. Oceanogr. 44, 37-51. https://doi.org/10.4319/lo.1999.44.1.0037
- 30. Logares, R., Lindstrom, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937-948. https://doi.org/10.1038/ismej.2012.168
- 31. Lopez-Garcia, P., Rodriguez-Valera, F., Pedros-Alio, C., Moreira, D., 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603-607. https://doi.org/10.1038/35054537
- 32. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.H., 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363-1371. https://doi.org/10.1093/nar/gkh293
- 33. Mangot, J.F., Lepere, C., Bouvier, C., Debroas, D., Domaizon, I., 2009. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl. Environ. Microbiol. 75, 6373-6381. https://doi.org/10.1128/AEM.00607-09
- 34. Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C., Chambouvet, A., Christen, R., Claverie, J.-M., Decelle, J., Dolan, J., Dunthorn, M., Edvardsen, B., Forn, I., Forster, D., Guillou, L., Jaillon, O., Kooistra, W., Logares, R., de Vargas, C., 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035-4049. https://doi.org/10.1111/1462-2920.12955
- 35. Massana, R., Guillou, L., Diez, B., Pedros-Alio, C., 2002. Unveiling the Organisms behind Novel Eukaryotic Ribosomal DNA Sequences from the Ocean. Appl. Environ. Microbiol. 68, 4554-4558. https://doi.org/10.1128/AEM.68.9.4554-4558.2002
- 36. Massana, R., Guillou, L., Terrado, R., Forn, I., Pedros-Alio, C., 2006a. Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat. Microb. Ecol. 45, 171-180. https://doi.org/10.3354/ame045171
- 37. Massana, R., Terrado, R., Forn, I., Lovejoy, C., Pedros-Alio, C., 2006b. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ. Microbiol. 8, 1515-1522. https://doi.org/10.1111/j.1462-2920.2006.01042.x
- 38. Mazur-Marzec, H., Andersson, A.F., Błaszczyk, A., Dąbek, P., Górecka, E., Grabski, M., Jankowska, K., Jurczak-Kurek, A., Kaczorowska, A.K., Kaczorowski, T., Karlson, B., Kataržytė, M., Kobos, J., Kotlarska, E., Krawczyk, B., Łuczkiewicz, A., Piwosz, K., Rybak, B., Rychert, K., Sjöqvist, C., Surosz, W., Szymczycha, B., Toruńska-Sitarz, A., Węgrzyn, G., Witkowski, A., Węgrzyn, A., 2024. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol. Rev. 48(5), fuae024. https://doi.org/10.1093/femsre/fuae024
- 39. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530-1534. https://doi.org/10.1093/molbev/msaa015
- 40. Moon-van der Staay, S.Y., De Wachter, R., Vaulot, D., 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607-610. https://doi.org/10.1038/35054541
- 41. Mukherjee, I., Grujčić, V., Salcher, M.M., Znachor, P., Seďa, J., Devetter, M., Rychtecký, P., Šimek, K., Shabarova, T., 2024. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. Environ. Microbiome 19, 31. https://doi.org/10.1186/s40793-024-00574-5
- 42. Mukherjee, I., Hodoki, Y., Nakano, S.-i., 2015. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91, fiv083. https://doi.org/10.1093/femsec/fiv083
- 43. Mukherjee, I., Salcher, M.M., Andrei, A.-Ş., Kavagutti, V.S., Shabarova, T., Grujčić, V., Haber, M., Layoun, P., Hodoki, Y., Nakano, S.-i., Šimek, K., Ghai, R., 2020. A freshwater radiation of diplonemids. Environ. Microbiol. 22, 4658-4668. https://doi.org/10.1111/1462-2920.15209
- 44. Piwosz, K., 2019. Weekly dynamics of abundance and size structure of specific nanophytoplankton lineages in coastal waters (Baltic Sea). Limnol. Oceanogr. 64, 2172-2186. https://doi.org/10.1002/lno.11177
- 45. Piwosz, K., Całkiewicz, J., Gołębiewski, M., Creer, S., 2018. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdańsk, Baltic Sea). Estuar. Coast. Shelf Sci. 207, 242-249. https://doi.org/10.1016/j.ecss.2018.04.013
- 46. Piwosz, K., Kownacka, J., Ameryk, A., Zalewski, M., Pernthaler, J., 2016. Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J. Phycol. 52, 626-637. https://doi.org/10.1111/jpy.12424
- 47. Piwosz, K., Mukherjee, I., Salcher, M.M., Grujčić, V., Šimek, K., 2021. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology. Front. Microbiol. 12, 640066. https://doi.org/10.3389/fmicb.2021.640066
- 48. Piwosz, K., Pernthaler, J., 2010. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ. Microbiol. 12, 364-377. https://doi.org/10.1111/j.1462-2920.2009.02074.x
- 49. Piwosz, K., Pernthaler, J., 2011. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS ONE 6, e24415. https://doi.org/10.1371/journal.pone.0024415
- 50. Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal, P., Salcher, M.M., 2020. Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 5, e00052-00020. https://doi.org/10.1128/msphere.00052-20
- 51. Santoferrara, L., Burki, F., Filker, S., Logares, R., Dunthorn, M., McManus, G.B., 2020. Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding. J. Eukaryot. Microbiol. 67, 612-622. https://doi.org/10.1111/jeu.12813
- 52. Schoenle, A., Hohlfeld, M., Hermanns, K., Mahé, F., de Vargas, C., Nitsche, F., Arndt, H., 2021. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501. https://doi.org/10.1038/s42003-021-02012-5
- 53. Steenwyk, J.L., Buida, T.J., 3rd, Li, Y., Shen, X.-X., Rokas, A., 2020. it ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007. https://doi.org/10.1371/journal.pbio.3001007
- 54. Strom, L.S., Morello, T.A., Kelley, J.B., 1998. Protozoan size influences algal pigment degradation during grazing. Mar. Ecol. Prog. Ser. 164, 189-197.
- 55. Tedersoo, L., Hosseyni Moghaddam, M.S., Mikryukov, V., Hakimzadeh, A., Bahram, M., Nilsson, R.H., Yatsiuk, I., Geisen, S., Schwelm, A., Piwosz, K., Prous, M., Sildever, S., Chmolowska, D., Rueckert, S., Skaloud, P., Laas, P., Tines, M., Jung, J.-H., Choi, J.H., Alkahtani, S., Anslan, S., 2024. EUKARYOME: the rRNA gene reference database for identification of all eukaryotes. Database 2024, baae043. https://doi.org/10.1093/database/baae043
- 56. Telesh, I., Schubert, H., Skarlato, S., 2013. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 135, 317-327. https://doi.org/10.1016/j.ecss.2013.10.013
- 57. Telesh, I.V., Schubert, H., Skarlato, S.O., 2011. Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 421, 1-11. https://doi.org/10.3354/meps08928
- 58. Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., et al., A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457-463. https://doi.org/10.1038/nature24621
- 59. Vaulot, D., Geisen, S., Mahé, F., Bass, D., 2022. pr2-primers: An 18S rRNA primer database for protists. Mol. Ecol. Resour. 22, 168-179. 13/13 https://doi.org/10.1111/1755-0998.13465
- 60. Villarino, E., Watson, J.R., Jönsson, B., Gasol, J.M., Salazar, G., Acinas, S.G., Estrada, M., Massana, R., Logares, R., Giner, C.R., Pernice, M.C., Olivar, M.P., Citores, L., Corell, J., Rodrı́guez-Ezpeleta, N., Acuña, J.L., Molina-Ramı́rez, A., González-Gordillo, J.I., Cózar, A., Martı́, E., Cuesta, J.A., Agustı́, S., Fraile-Nuez, E., Duarte, C.M., Irigoien, X., Chust, G., 2018. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142. https://doi.org/10.1038/s41467-017-02535-8
- 61. Weber, F., Anderson, R., Foissner, W., Mylnikov, A.P., Jürgens, K., 2014. Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquat. Microb. Ecol. 73, 1-16. https://doi.org/10.3354/ame01702
- 62. Witek, Z., Ochocki, S., Maciejowska, M., Pastuszak, M., Nakonieczny, J., Podgorska, B., Kownacka, J.M., Mackiewicz, T., Wrzesinska-Kwiecien, M., 1997. Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169-186. https://doi.org/10.3354/meps148169
- 63. Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E., Keeling, P.J., 2015. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347, 1257594. https://doi.org/10.1126/science.1257594
- 64. Wylezich, C., Herlemann, D.P.R., Jürgens, K., 2018. Improved 18S rDNA amplification protocol for assessing protist diversity in oxygen-deficient marine systems. Aquat. Microb. Ecol. 81, 83-94. https://doi.org/10.3354/ame01864
- 65. Wylezich, C., Juergens, K., 2011. Protist diversity in suboxic and sulfidic waters of the Black Sea. Environ. Microbiol. 13, 2939-2956. https://doi.org/10.1111/j.1462-2920.2011.02569.x
- 66. Zillén, L., Conley, D.J., Andrén, T., Andrén, E., Björck, S., 2008. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Sci. Rev. 91, 77-92. https://doi.org/10.1016/j.earscirev.2008.10.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8482e5b9-b604-460b-88b2-cbc80370cd75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.