PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water distribution and risk governance: data issues in view of development of risk-informed decision-making approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
16th Summer Safety & Reliability Seminars - SSARS 2022, 4-11 September 2022, Ciechocinek, Poland
Języki publikacji
EN
Abstrakty
EN
The issues of failure risk assessment in water distribution systems are presented. Water supply network failure constitute a crucial issue in water distribution sector. Attention has been paid to the problem of risk assessment considering risk acceptance criteria. Besides, the water network failure indicators were assessed. The presented methods can be used to describe the general characteristics and the technical conditions of the water distribution system. The chapter is intended to draw the attention to the need for further technical and organisational improvement and for the standardization of the failure risk assessment in the water distribution systems.
Twórcy
Bibliografia
  • Alim, S. 1988. Application of Dempster-Shafer theory for interpretation of seismic parameters, ASCE Journal of Structural Engineering 114(9), 2070-2084.
  • Asnaashari, A., McBean, E.A., Shahrour, I. & Gharabaghi, B. 2009. Prediction of water main failure frequencies using multiple and Poisson regression. Water Supply 9, 9-19.
  • Barton, N.A., Farewell, T.S., Hallett, S.H. & Acland, T.F. 2019. Improving pipe failure predictions: factors affecting pipe failure in drinking water networks. Water Research 164, 114926.
  • Barton, N.A., Hallett, S.H., Jude, S.R. & Tran, T.H. 2022. Predicting the risk of pipe failure using gradient boosted decision trees and weighted risk analysis. npj Clean Water 5, 22.
  • Brandowski, A. 2005. Estimation of subjective probability in risk modelling.Operation problems (20)4, 503-24.
  • Bruaset, S. & Sægrov, S. 2018. An analysis of the potential impact of climate change on the structural reliability of drinking water pipes in cold climate regions. Water 10, 411.
  • Chen, T.Y.J., Beekman, J.A., David Guikema, S. & Shashaani, S. 2019. Statistical modeling in absence of system specific data: exploratory empirical analysis for prediction of water main breaks. Journal of Infrastructure Systems 25, 04019009.
  • Choi, Y.H. 2021. Qualification of hydraulic analysis models for optimal design of water distribution systems. Applied Sciences 11, 8152.
  • Christodoulou, S. & Deligianni, A. 2010. A Neurofuzzy decision framework for the management of water distribution networks. Water Resources Management24, 139-156.
  • Dempster, A. 1967. Upper and lower probabilities induced by a multi-valued mapping. The Annals of Statistics 28, 325-339.
  • Demotier, S., Schon, W. & Denoeux T. 2006. Risk assessment based on weak information using belief functions: a case study in water treatment. IEEE Transactions on Systems Man and Cybernetics Part C (Applications and Reviews) 36(3), 382-396.
  • De Oliveira, D.P., Garrett, J.H. & Soibelman, L. 2011. A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage. Advanced Engineering Information 25, 380-389.
  • Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water in-tended for human consumption, OJ L 435, 23.12.2020.
  • Domon, A., Papciak, D., Tchorzewska-Cieslak, B. & Pietrucha-Urbanik, K. 2018. Biostability of tap water a qualitative analysis of health risk in the example of groundwater treatment (semi-technical scale). Water 10, 1764.
  • Economou, T., Kapelan, Z. & Bailey, T. 2009. A zero-inflated Bayesian model for the prediction of water pipe bursts. Geotechnical Special Publication 187, 724-779.
  • Eid, M. 2010. Modelling sequential events for risk, safety and maintenance assessments. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 1, 83-87.
  • Eid, M., El-Hami, A., Souza de Cursi, E., Kołowrocki, K., Kuligowska, E. & Soszyńska-Budny, J. 2015. Critical Infrastructures Protection (CIP) - coupled modelling for threats and resilience. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 6(1), 85-94.
  • Eisenbeis, P., Rostum, J. & Le Gat, Y. 1999. Statetical models for assessing the technical state of water networks some European experiences. AWWA American Water Works Association Annual Conference. AWWA, Chicago, Illinois.
  • EN 15975-1. Security of Drinking Water Supply. Guidelines for Risk and Crisis Management. Part 1. Crisis Management. British Standards Institution: London, UK, 2011.
  • EN 15975-2. Security of Drinking Water Supply. Guidelines for Risk and Crisis Management. Part 2. Risk Management. British Standards Institution: London, UK, 2013.
  • Engelhardt, M., Savic, D., Skipworth, P. Cashman, A., Saul A. & Walters, G. 2003. Whole life costing application to water distribution network Water Supply 3(1-2), 87-93.
  • Ezbakhe, F. & Pérez-Foguet, A. 2018. Multi-Criteria Decision Analysis Under Uncertainty: Two Approaches to Incorporating Data Uncertainty into Water, Sanitation and Hygiene Planning. Water Resources Management 32(15), 5169-5182.
  • Farmani, R., Walters, G.A., Savic, D.A., 2005 Trade-off between total cost and reliability for Any town water distribution network. Journal of Water Resources Planning and Management 131(3), 161-171.
  • Fuchs-Hanusch, D., Gangl, G., Kornberger, B. Kolbl, J., Hofrichter, J. & Kainz, H. 2008. PiReM - pipe rehabilitation management. Developing a decision support system for rehabilitation planning of water mains. Water Practice Technology 3(1), 1-9.
  • Fuchs-Hanusch, D., Kornberger, B., Friedl, F. & Scheucher, R. 2012. Whole of life cost calculations for water supply pipes. Water Asset Management International 8(2), 19-24.
  • Giraldo-González, M.M. & Rodríguez, J.P. 2020. Comparison of statistical and machine learning models for pipe failure modeling in water distribution networks. Water 12, 1153.
  • Giustolisi, O., Laucelli, D. & Savic, D.A. 2006. Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment. Civil Engineering and Environmental Systems 23(3), 175-190.
  • Haffejee, M. & Brent, A.C. 2008. Evaluation of an integrated asset life-cycle management (ALM) model and assessment of practices in the water utility sector. Water SA 14(2), 285-290.
  • Jafar, R., Shahrour, I. & Juran, I. 2010. Application of Artificial Neural Networks (ANN) to model the failure of urban water mains. Mathematical and Computer Modelling 51, 1170-1180.
  • Kacprzyk, J. & Fedrizzi, M. 1991. Advances in Dempster-Shafer theory of evidence. Wiley, New York.
  • Kakoudakis, K., Farmani, R. & Butler, D. 2018. Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors. Journal of Hydroinformatics20, 1191-1200.
  • Kerwin, S., Garcia de Soto, B., Adey, B., Sampatakaki, K. & Heller, H. 2020. Combining recorded failures and expert opinion in the development of ANN pipe failure prediction models. Sustainable and Resilient Infrastructure 1-23, 1787033.
  • Kleiner, Y. & Rajani, B. 2000. Considering time-dependent factors in the statistical prediction of water main breaks. American Water Works Association Infrastructure Conference(AWWA 2000) 1-12.
  • Kleiner, Y. & Rajani, B. 2000. Using limited data to assess future needs. Journal of Amercian Water Works Association 91(7), 47-61.
  • Kuliczkowska, E., Kuliczkowski, A. & Tchórzewska-Cieślak, B. 2020. The structural integrity of water pipelines by considering the different loads. Engineering Failure Analysis 118, 104932.
  • Kwietniewski, M. 2011. Failure of water supply and wastewater infrastructure in Poland based on the field tests. Proceedings of the XXV Scientific-Technical Conference, Międzyzdroje, Poland, 24-27 May 2011, 12-140.
  • Kwietniewski, M., Roman, M. & Kłoss-Trębaczkiewicz, H. 1993. Reliability of Water Supply and Sewage Systems. Arkady, Warszawa.
  • Lienert, J. & Scheidegger, A. 2014. Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis. Water Research 49, 124-143.
  • Lin, P., Chen, X., Huang, S. & Ma, B. 2022. An optimal maintenance and replacement strategy for deteriorating water mains. Water14, 2097.
  • Luo, W.B. & Caselton, B. 1997. Using Dempster-Shafer theory to represent climate change uncertainties. Journal of Environmental Management 49(1), 73-93.
  • Mays L.W. 2005. The role of risk analysis in water resources engineering. Department of Civil and Environmental Engineering. Arizona State University, Arizona.
  • Mathye, R.P., Scholz, M. & Nyende-Byakika, S. 2022. Optimal pressure management in water distribution systems: efficiency indexes for volumetric cost performance, consumption and linear leakage measurements. Water14, 805.
  • Motiee, H. & Ghasemnejad, S. 2019. Prediction of pipe failure rate in Tehran water distribution networks by applying regression models. Water Supply 19, 695-702.
  • Papciak, D., Tchórzewska-Cieślak, B., Domoń, A., Wojtuś, A., Żywiec, J. & Konkol, J. 2019. The impact of the quality of tap water and the properties of installation materials on the formation of biofilms. Water 11, 1903.
  • Park, S. & Kim, K. 2017. Development of new computational methods for identifying segments and estimating the risk of water supply interruption for a segment in water pipe networks. Desalination Water Treatment 99, 211-219.
  • Pietrucha-Urbanik, K. & Rak, J.R. 2020. Consumers’ perceptions of the supply of tapwater in crisis situations. Energies 13, 3617.
  • Pietrucha-Urbanik, K. & Studziński A. 2017. Case study of failure simulation of pipelines conducted in chosen water supply system. Eksploatacja i Niezawodność - Maintenance and Reliability 19(3), 317-323.
  • Pietrucha-Urbanik, K. & Studziński, A. 2020. Qualitative analysis of the failure risk of water pipes in terms of water supply safety.Engineering Failure Analysis 95, 371-378.
  • Pietrucha-Urbanik, K. & Tchórzewska-Cieślak, B. 2017. Failure risk assessment in water network in terms of planning renewals - a case study of the exemplary water supply system. Water Practice and Technology 12, 274-286.
  • Pietrucha-Urbanik, K. & Tchórzewska-Cieślak, B. 2018. Approaches to failure risk analysis of the water distribution network with regard to the safety of consumers. Water10, 1679.
  • Pietrucha-Urbanik, K. & Tchórzewska-Cieślak, B. 2021. Water network functional analysis. IOP Conference Series: Earth and Environmental Science 900, 012034.
  • Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2021. A case study in view of developing predictive models for water supply system management. Energies 14, 3305.
  • Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2020. Water network-failure data assessment. Energies 13, 2990.
  • Rak, J. 2005. Bases of Water Supply System Safety. Polish Academy of Science, Lublin, Poland.
  • Rak, J.R. & Pietrucha-Urbanik, K. 2019. An approach to determine risk indices for drinking water - study investigation. Sustainability 11, 3189.
  • Rak, J.R. 2007. Some aspects of risk management in waterworks. Ochrona Środowiska 29, 61-64.
  • Rak J. & Tchórzewska-Cieślak B. 2013. Risk in the operation of collective water supply systems.Seidel-Przywecki, Warsaw, Poland.
  • Rak J. & Tchórzewska-Cieslak B. 2006. The method of integrated failure risk assessment in the water distribution subsystem. Gas, Water and Sanitary Technique 1, 11-15.
  • Rak, J.R., Tchórzewska-Cieślak, B. & Pietrucha-Urbanik, K. 2019. A hazard assessment method for waterworks systems operating in self-government units. International Journal of Environmental Research and Public Health 16, 767.
  • Robles-Velasco, A., Cortés, P., Muñuzuri, J. & Onieva, L. 2020. Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliability Engineering and System Safety 196, 106754.
  • Saaty, L.T. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathe-matical Psychology 15, 234-281.
  • Sadiq, R., Kleiner, Y. & Rajani B. 2004. Aggregative risk analysis for water quality failure in distribution networks. Journal of Water Supply. Research & Technology AQUA 536, 241-261.
  • Salehi, S., Jalili Ghazizadeh, M., Tabesh, M., Valadi, S. & Salamati Nia, S.P. 2021. A risk component-based model to determine pipes renewal strategies in water distribution networks. Structure and Infrastructure Engineering 17, 1338.
  • Shafer, G. 1976. Mathematical Theory of Evidence. Princeton University Press: Princeton.
  • Snider, B. & McBean, E.A. 2019. Improving urban water security through pipe-break prediction models: machine learning or survival analysis. Journal of Environmental Engineering 146, 04019129.
  • Snider, B. & McBean, E.A. 2020. Watermain breaks and data: the intricate relationship between data availability and accuracy of predictions. Urban Water Journal 17, 163-176.
  • Studziński, A., &Pietrucha-Urbanik, K. 2019. Failure risk analysis of water distributions systems using hydraulic models on real field data. Ekonomia i Środowisko 68, 152-165.
  • Taeho, C., Sewan, L., Dooil, K. Mincheol, K. & Jayong, K. 2014. Application of management reliability index for water distribution system assessment. Environmental Engineering Research 19, 117-122.
  • Tang, K., Parsons, D.J. & Jude, S. 2019. Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system. Reliability Engineering & System Safety 186, 24-36.
  • Tchorzewska-Cieslak, B. 2007. Estimating the acceptance of bearing the cost of the risks associated with the management of water supply system. Ochrona Środowiska 29, 69-72.
  • Tchórzewska-Cieślak, B. 2011. Methods of Ana-lysis and Assessment of the Risk of Failure of the Water Distribution Subsystem. Publishing House of the Rzeszow University of Technology, Rzeszow, Poland.
  • Tchórzewska-Cieślak, B. 2018. Multifaceted Analysis of Safety in the Operation of Water Supply Systems. Publishing House of the Rzeszow University of Technology, Rzeszow, Poland.
  • Tchórzewska-Cieślak, B. 2009. Water supply system reliability management. Environmental Protection Engineering 35, 29-35.
  • Tchórzewska-Cieślak, B. 2011. Application of the mathematcal theory of evidence to analyse risk of failure in water network. Technical Transactions 1(108), 201-210.
  • Tchórzewska-Cieślak, B. 2011. Fuzzy Model for Failure Risk in Water Networks. Ochrona Środowiska 1(33), 35-41.
  • Tchórzewska-Cieślak, B. & Pietrucha-Urbanik, K. 2018. Approaches to methods of risk analysis and assessment regarding the gas supply to a city. Energies 11, 3304.
  • Tchórzewska-Cieślak, B., Papciak, D. & Pietrucha-Urbanik, K. 2017. Estimating the Risk of Changes in Water Quality in Water Supply Networks. Rzeszow University of Technology Publishing House, Rzeszow, Poland.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Eid M. 2021. Functional safety concept to support hazard assessment and risk management in water-supply systems. Energies 14(4), 947.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Kuliczkowska, E. 2020. An approach to analysing water consumers’ acceptance of risk-reduction costs. Resources9, 132.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Papciak, D. 2019. An approach to estimating water quality changes in water distribution systems using fault tree analysis. Resources 8, 162.
  • Tchórzewska-Cieślak, B., Papciak, D., Pietrucha-Urbanik, K. & Pietrzyk, A. 2018. Safety analysis of tap water biostability. Architecture Civil Engineering Environment 11, 149-154.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K., Urbanik, M. & Rak, J.R. 2018. Approaches for safety analysis of gas-pipeline functionality in terms of failure occurrence: a case study. Energies 11, 1589.
  • Teichmann, M., Kuta, D., Endel, S. & Szeligova, N. 2020. Modeling and optimization of the drinking water supply network – a system case study from the Czech Republic. Sustainability 12, 9984.
  • Toumbou, B., Villeneuve, J.P., Beardsell, G. & Duchesne, S. 2014. General model for water-distribution pipe breaks: development, methodology, and application to a small city in Quebec, Canada. Journal of Pipeline Systems Engineering and Practice 5, 04013006.
  • Urbanik, M., Tchórzewska-Cieślak, B. & Pietrucha-Urbanik, K. 2019. Analysis of the safety of functioning gas pipelines in terms of the occurrence of failures. Energies 12, 3228.
  • Walski, T.M. & Pelliccia, A. 1982. Economic analysis of water main breaks. Journal of American Water Works Association 74, 140-147.
  • Winkler, D., Haltmeier, M., Kleidorfer, M., Rauch, W. & Tscheikner-Gratl, F. 2018. Pipe failure modelling for water distribution networks using boosted decision trees. Structure and Infrastructure Engineering 14, 1402-1411.
  • World Health Organization 2005. Water Safety Plans. Managing drinking-water quality from catchment to consumer, Water, Sanitation and Health. Protection and the Human Environment; World Health Organization: Geneva, Switzerland.
  • World Health Organization 2011. Guidelines for Drinking-Water Quality, 4th ed. World Health Organization, Geneva, Switzerland.
  • Xiong, H., Sun, Y. & Ren, X. 2020. Comprehensive assessment of water sensitive urban design practices based on multi-criteria decision analysis via a case study of the University of Melbourne, Australia. Water 12, 2885.
  • Xu, W., Kong, Y., Proverbs, D., Zhang, Y., Zhang, Y. & Xu, J. 2022. A Water resilience evaluation model for urban cities. Water 14, 1942.
  • Yager, R.R. 1987. On the Dempster-Shafer framework and new combination rules. Information Sciences 41, 93-137.
  • Yamijala, S., Guikema, S.D. & Brumbelow, K. 2009. Statistical models for the analysis of water distribution system pipe break data. Reliability Engineering and System Safety 94, 282-293.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-847ffe2a-0f2b-4585-8bd9-4f86da131b77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.