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Abstract  
 

The issues of failure risk assessment in water distribution systems are presented. Water supply network 
failure constitute a crucial issue in water distribution sector. Attention has been paid to the problem of 
risk assessment considering risk acceptance criteria. Besides, the water network failure indicators were 
assessed. The presented methods can be used to describe the general characteristics and the technical 
conditions of the water distribution system. The chapter is intended to draw the attention to the need for 
further technical and organisational improvement and for the standardization of the failure risk assess-
ment in the water distribution systems. 
 
1. Introduction  
 

The task of water supply systems is to provide 
consumers with the required amount of water hav-
ing proper quality and necessary pressure, accord-
ing to the valid standards, at an acceptable price 
and at the convenient time for the consumer.  
The water supply and distribution subject receives 
the highest attention of regulating bodies (Di-
rective 2020/2184; EN 15975-1, 2011; EN 15975-
1, 2013; WHO, 2011) as well as the water science 
and engineering researchers (Kulicz-kowska et 
al., 2020; Kwietniewski et al., 1993; Pietrucha-
Urbanik & - , 2017; Sadiq, et 
al., 2004). 
Besides, many researchers from industry and from 
academy develop methods and tools to enhance 
our capacities in risk management. Some propose 
methods for risk management driven by life cycle 
management including adoptative and advanced 
maintenance strategies others suggest the use of 

predictive techniques to prevent, eliminate or mit-
igate failures and their consequences (Barton, 
2019; Economou et al., 2009; Eisenbeis et al., 
1999; Kerwin et al. 2020; Kleiner & Rajani, 2000). 
At present, the main concerns in developed coun-
tries is to upgrade the management of the water 
supply and distribution safety in compliance with 
modern standards and regulations and the renewal 
of the aged water distribution networks. The op-
eration of aged water networks with pipe ages var-
ying from 50 to even 100 years is characterized by 
a high failure frequency and criticality. That im-
pacts on the water losses, as well as on the system 
operational safety and reliability (Mays, 2005; 
Engelhardt et al., 2003; Pietrucha-Urbanik & 

- Robles-Velasco et 
al., 2020).  
Another important problem with aged networks is 
the oversized diameters of water-pipes. That de-
creases the water flow rate and subsequently in-
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creases the risk of water quality deterioration (Do-
mon et al., 2018; Park & Kim, 2017; Rak et al., 
2019 -  et al., 2017). 
Assessing technical performance of the aged dis-
tribution networks requires failure databases of 
high statistical quality. A crucial task in the failure 
analysis is gathering the proper failure records, as 
well as experts echnical assessments (e.g. oper-
ators) and specialists (e.g. researchers) (Eid, 2010; 
Motiee & Ghasemnejad, 2019 -

). 
Based on data with high statistical quality, differ-
ent issues in water supply and distribution can be 
effectively assessed such as; reliability and safety, 
supplied water pricing, natural water sources se-
curity, and conformity with standards and regula-
tions (Pietrucha-Urbanik & Rak, 2020; Pietrucha-
Urbanik & - Rak, 
2007 - , Papciak 
et al., 2019; Rak, 2009; Rak & Pietrucha-Urbanik, 
2019). 
All the previously mentioned issues should be ef-
fectively assessed at the earliest stage of the sys-
tem design, construction, renovation, and 
throughout the whole operational life, aiming at 
(Fuchs-Hanusch et al., 2008; Tchorzewska-
Cieslak et al., 2021; Pietrucha-Urbanik et al., 
2020; Eid et al., 2015; Kakoudakis, 2018; Tang et 
al., 2019; Winkler et al., 2018; Chen, et al. 2019): 
 best specification of water supply system, 
 determining the critical value of the failure rate 

of the water supply network, 
 specifying the type of safety procedures asso-

ciated with the operation of the water supply 
network, 

 determining the critical value of risk levels. 
Regarding renovation issue, Failure analysis con-
stitutes the main source of information needed to 
perform the water network modernization 
(Asnaashari et al., 2009; Barton et al., 2022). 
In 2004, the third edition of the Guidelines for 
Drinking Water Quality (Guidelines for Drinking-
Water Quality) published by the World Health Or-
ganization provided guidance for the development 
of the so-called Water Safety Plan, whose aim is 
to establish the requirements concerning critical 
infrastructure protection (WHO, 2005). The water 
safety plans should also be included in the stand-
ards. WHO standards recommends to perform 
failure risk analysis of the water distribution net-
work in order to fulfil the safety and reliability re-
quirements for the water supply system (Salehi et 

al., 2021; Snider & McBean, 2019). 
The proposed analysis should provide the basis 
for a comprehensive risk management of to be im-
plemented in the water safety plans as well as in 
decision-making processes. The aim of this chap-
ter is to propose a scheme for operational assess-
ment. 
 
2. Failures occurring in water distribution 

systems 
 

The water network consists of mains, distribu-
tional pipes and water supply connections to-
gether with particular fittings such as check 
valves, hydrants, flow meters, etc.  
Failures which occur in water pipe network and 
fittings have random character and can be caused 
by the events connected with groundwork, water 
pipe technical state, errors at mounting, or sudden 
temperature changes. Such situations cause the 
difficulty in performing the analysis (Bruaset & 

; Xu et al., 
2022).  
During the operation of the water supply system 
functioning, various failures can occur causing 
water losses and they can be a reason for the sec-
ondary contamination of water in the water net-
work, which is a serious threat to consumer safety 
(Lin et al., 2022; Mathye et al., 2022). 
Very often, such situations cause high failure fre-
quency in the network according to (De Oliveira 
et al., 2011; Giraldo- , 
2020; Jafar, 2010; Teichmann et al. 2020):  
 incorrectly assumed concept of network struc-

ture (network in open or mixed system),  
 wrongly chosen network operating hydraulic 

conditions, 
 too high working pressure,  
 lack of cut-off and control fittings that protect 

against water hammer.  
Frequently the failures in the water network con-
cern: 
 pipes, e.g. cracks, corrosion, 
 loose connections, e.g. leaks, 
 fittings, e.g. damage of hydrants. 

Proper operation of water network consists of its 
constant control, which includes -

: 
 pressure measurement in water pipe network, 

inspection of water pipe network fittings 
(maintenance or removal), expansion of water 
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network and construction of new connections, 
repairs to water pipe network failure,  

 pipes renovation (the interior surface is cov-
ered with cement mortar or epoxide mortar, 
flexible lining), 

 pipes reconstruction (pipes relining, compact 
pipe (U-liner), plastic pipes put into pipe being 
repaired), 

 renewal of pipes (using the trench and trench-
less method, removing or leaving the old pipe). 

 
3. Data collection 
 

A significant problem is gathering and archiving 
statistical data of failures (Asnaashari et al., 2009; 
Barton et al., 2022; Kleiner & Rajani 2000; Snider 
& McBean, 2020). To perform this activity, the 
modern Supervisory Control And Data Acquisi-
tion (SCADA) systems should be used (Choi, 
2021; Xiong et al., 2020). 
The input data can be distinguished in two classes: 
network descriptive characteristics and opera-
tional feedback failure frequency and recovery 
time data (Yamijala et al., 2009). 
The descriptive characteristics of the network 
cover the following groups (Pietrucha-Urbanik et 
al., 2021; - -Ur-
banik, 2018): 
 general information about the objects (loca-

tions, ages, etc.), 
 technical data about the objects (types of ob-

jects considering their functionality, geometry, 
materials, technology, operational conditions, 
etc.), 

 data on failure (type of event, cause, mecha-
nisms, etc.), 

 data on the effects and consequences of failure 
(type, damage severity, extensions, etc.), 

 additional information (report date, environ-
mental data, cost). 

 
4. Determining failure rate and availability 
 

Failure rate is used in the analysis and assessment 
of the water supply system failure and is calcu-
lated as the average value of the damage intensity 
of pipes, connectors, and fittings.  
A failure occurrence rate  is calculated using the 
following equation (Kwietniewski et al., 1993): 
 

  (1) 

where ) represents the number of failures ob-
 and along a 

. 
The criteria and categories presented are devel-
oped on the basis of waterworks practice and fail-
ure analysis performed in different water supply 
systems. 
Criteria regarding failure rate were proposed in 
the following works (Kwietniewski, 2011; Rak, 
2005). The former criteria (Rak, 2005) provide 
that failure rates should not exceed criterion val-
ues, as follows. In the case of mains Mcrit is less 
than 0.3 km , compared to less than 0.5 for 
the distribution pipe Dcrit  
for service connections SCcrit. In (Kwietniewski, 
2011), proposals for the classification of failure 
rate criteria for the entire water distribution net-
work were presented and classified in terms of re-
liability, with a high failure rate concerning low 
reliability when lr_crit , high re-
liability when hr_crit , and aver-
age reliability between the criteria values men-
tioned 0.1 < ar_crit < 0.5 km .  
The criteria should primarily take account of as-
pects related to the safety of water consumers, and 
technical or technical/economic analysis. Such 
criteria are used for decisions that are made about 
running the system (e.g., regarding renovation, 
modernisation, and authorisation for use) (Taeho 
et al., 2014).  
Mean Time to Repair MTTR [ ] considers the 
time from the moment of failure declaration until 
re-establishing of the water flow in the damaged 
section of the water supply network: 
 

(2) 

 
where Tet is the administrative time for repair [h] 
and Tr is the real time of repair [h]. 
The precise definition of operating states of the 
water supply system has a significant impact on 
the analysis of the reliability and safety of the sys-
tem - .  
The following values are proposed, which defines 
the operating conditions in the water supply  
system taking into account the category of the  
water supply system (Pietrucha-Urbanik & 

- ; Rak, 2005). 
In case of failure rate: 



 
Pietrucha-Urbanik Katarzyna - , Eid Mohamed 

176 

 water network supplying less than 2000 recip-
, controlled 

from 0.9 to 2.0 km
km , 

 water network supplying the settlement units 
of more than 2000 and less than 200 000 recip-
ients: , controlled 
from 0.5 to 1.5 km
km , 

 large water network that supplies more than 
200,000 recipients: tolerabl , 
controlled from 0.5 to 1.0 km , unac-

, 
 particularly important industrial plants, hospi-

tals: determined on the basis of a detailed anal-
ysis. 

In case of MTTR: 
 water network supplying less than 2000 recip-

 
 water network supplying the settlement units 

of more than 2000 and less than 200 000 recip-
ients: 

 
 large water network that supplies more than 

200,000 recipients: 
 

 particularly important industrial plants, hospi-
tals: determined on the basis of a detailed anal-
ysis. 

In case of the tolerable category, the system can 
be operated under no special conditions, the oper-
ators should perform inspections and conduct fail-
ure analysis. In comparison, when the unaccepta-
ble category of water supply system occurs, the 
system should not be operated and immediate ac-
tion should be initiated. 
The level of water losses can be distinguished as 
indicators of service quality level and water net-
work conditions and can be distinguished in the 
following way:  
 water loss rate per unit for the entire length of 

the line, 
 Unavoidable Annual Real Losses (UARL) is 

the annual volume loss, which is considered to 
be inevitable and economically viable. This 
means that the removal of small leaks does not 
cause significant water losses and damages in 
the vicinity of the water supply and greatly ex-
ceeds the material damage caused by these 
leaks, 

 Infrastructure Leakage Index (ILI) is the ratio 
of the annual volume ratio of losses to UARL,  

 Real Loss Benchmark (RLB) calculated as the 
annual volume of unsold water per length of 
water pipeline. 

 
5. Estimation of failure cost of water  

pipelines 
 

Prior to an analysis of the effect of an undesirable 
event C, components of the cost of liquidating a 
single failure were determined as cfi. 
This cost consists of components as follows and 
can be expressed as (Urbanik et al., 2019): 
 

 (3) 
 
where clab represents labour costs, ctran transport 
costs, cmat material costs, cmes mark-up expenses 
supply, and cpm is mark-up profit and tax. 
In turn, costs due to water losses in the course of 
a failure cgl are estimated according to the for-
mula: 
 

 (4) 
 

V is the amount of water lost, in m3, 
and cgp is the price of water in EUR/m3. 
Other costs associated with failure repairs concern 
the cost of restoring the failure place to the state 
before failure, as well as costs of preliminary 
works including the separation of the failure 
place, location of water pipe failure, industry su-
pervision, approval and acceptance inspection, 
marking place in the case of traffic organization 
change. 
Labour costs are calculated on the basis of reports 
on water supply failures and labour sheets of em-
ployees taking part in the removal of these fail-
ures. The costs for the course of the vehicles 
owned by the municipal enterprise associated with 
failure repairs of the water network were calcu-
lated on the basis of the failure report attached to 
the road cards of the cars. 
Additional costs related to the unreliability of the 
water supply system are the costs of maintenance 
brigades. In addition to water loss costs other than 
the unreliability of the system, so-called unavoid-
able water loss occurring on the water network or 
during rinsing the network. 
It is worth mentioning that the research-based 
method of analysing the acceptance by water 
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consumers of the costs incurred by enterprises in 
risk reduction should be part of an appropriate 
policy that an enterprise pursues in the context of 
consultation with the local community 

-
constitute an important step towards ensuring the 
safety of water consumers and should therefore 
be a fundamental element in the strategy pursued 
by water utilities. Detailed procedures should be 
consulted with a wide range of experts from var-
ious fields. The costs of changes and improve-
ments should be taken into account, but priority 
should always be given to providing consumers 
with water that is safe for their health (Tcho-
rzewska-Cieslak, 2007). 
An important element of failure risk-informed 
management in a water supply company should 
be the analysis of consumer acceptance of the ac-
tions taken to reduce failures, as these influence 
the price of water. On this basis, water utilities 
can implement information management proce-
dures. 
 
6. Failure-effect analyses in water  

distribution system 
 

The effects can involve both a lack of income for 
the water company due to the fact that the water 
goes undelivered and possible compensation to 
recipients deprived of water -

 2018). 
The estimation of losses, which are often random 
in nature, is not simple in practice. 
Losses increase expenses and are associated with 
costs, with the result that profit is reduced. This 
justifies an interest, on the part of water compa-
nies, in an assessment of risk that is as accurate as 
possible. In general, the principle that small losses 
occur at relatively high levels of probability is 
proven in practice (Farmani et al., 2005; Fuchs-
Hanusch, 2012; Giustolisi, et al. 2006). 
As risk-level calculations can be performed for 
several thresholds that are adapted to expected 
water shortages or possible costs, it is necessary 
to determine the risks of unreliability of function-
ing and safety unreliability (Haffejee & Brent, 
2008; rzewska- . 
The direct risk assessment method is based itself 
on historical data, with no analysis of the causes 
of losses being carried out (Brandowski, 2005; 
Walski & Pelliccia, 1982). 

Risk can be defined as the probability that a spec-
ified value of financial losses will be exceeded 
( - ): 
 

}  (5) 
 
and 
 

  (6) 
 
where r is the risk of losses and E(C) is the value 
of an expected loss, in calculations based on the 
formula ( rzewska-Cie lak, 2018): 
 

 (7) 
 
where Pi is the probability of an undesirable event 
causing losses, and Ci is the absolute value of 
losses expressed as financial costs resulting from 
the occurrence of a single undesirable event and 
the expected financial profit. 
If there is no appropriate database from which ap-
propriate probabilities can be determined, the risk 
can be derived from the following formula: 
 
r = Cavg/profit   (8) 

 
where Cavg is the average annual size of losses and 
profits that are expected in the given year. This 
measure is an indicator of financial losses. 
 
7. Methods of failure risk analysis of water 

distribution system 
 

7.1. Risk prioritizing in water supply network 
 

The method of risk prioritizing involves selecting 
the level of factors that affect the risk of failure in 
the water supply network. The proposed method 
is based on the classification of risk factors for 
failure of the water supply network and assigning 
them points values  functional criteria (FCi) and 
point weights  assessment criteria (ACi), and then 
calculating the index of risk prioritizing (IRP). 
In this way, a value of the risk prioritization index 
 IRP  is calculated according to the formula 

-  2011): 
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where IRP is the index of failure vulnerability, 
FCi means functional criteria, ACi means assess-
ment criteria and n is the number of criteria taken 
into account in the considered method. Each func-
tional criterium, depending on the degree of influ-
ence of the factor on the risk prioritizing index, 
has assigned a point value in the following way as 
shown: from 0 to 1  neglected, from 2 to 3  un-
important, from 4 to 6  the average important, 7 
and 8  important, from 9 to 10  very important. 
The values of assessment criteria ACi are adopted 
depending on the importance of the damaged pipe, 
according to the following scale: 1  low, 2  me-
dium, 3  high, or 4  very high. 
The value of the IRP obtained through performed 
analysis helps to make decisions concerning the 
operation or modernization of the system. Ne-
glected risk (IRP < 70 points) - no further action 
is required and system operates in proper and re-
liable way. In case of obtaining tolerable risk pre-
ventive action in the system is not needed (from 
70 to 100 points). Controlled risk means that the 
system is allowed to operate but under the condi-
tion that modernization or repair will be under-
taken (from 100 to 170). If unacceptable level oc-
curs an immediate action should be taken to re-
duce the IRP (> 170 points).  

ater network age and material, hydro-
geological conditions, network monitoring, corro-
sion protection, the density of underground infra-
structure in the area where the network is located, 
dynamic loads, including the difficulty of repairs 
in the area where the network is situated, failure 
rate, size of possible losses resulting from failure 
occurrence, the difficulty to repair damages (Rak 

-Cieslak, 2006; -
 2018). 

 
7.2. Multi-criteria decision analysis for risk 

assessment as regards failures in water 
distribution system 

 

Multi-criteria decision analysis entails a choice of 
criteria influencing the risk of failure in a water 
distribution network, and the future occurrence 
thereof. The method suggested is based on risk-
criteria grouping as regards failure in a water dis-
tribution network, with assessment then carried 
out by reference to determined point values under 
the Analytic Hierarchy Process method (Saaty, 
1977). As well as approaches to incorporating 

data uncertainty into multi-criteria decision mak-
-Foguet, 2018; 

Lienert & Scheidegger, 2014). It is assumed that 
risk means a measure by which to assess a hazard 
or threat resulting either from probable events be-
yond our control or from the possible conse-
quences of a decision. Impacts are distinguished 
through the additive value of risk, which includes 
the category criterion of the size of possible finan-
cial losses resulting where failures arise. Evalua-
tion criteria weights, as a criterion of financial 
losses. The risk is interpreted in terms of expected 
losses (Pietrucha- -

  
The procedure for using this method involves def-
inition and analysis of the decision problem and 
goal setting decisions. The final decision is based 
on a synthesis of partial evaluation and selection 
of the best variant, through the creation of overall 
assessment scales using criteria and partial evalu-
ation of alternatives. 
 
7.3. Application of Dempster Shafer  

evidence theory in analysis of failure risk 
of water distribution systems 

 

The Dempster Shafer theory (DST) is treated as a 
generalization of Bayesian probability theory. For 
different hypotheses or evidences, the probabili-
ties are assigned using the belief function referred 
to as BPA (Basic Probability Assignment) or m 
(Dempster, 1967; Shafer, 1976, -

 2011). The DST also provides the possi-
bility of combining different hypotheses and, on 
that basis, determining the baseline probability 
(Kacprzyk, & Fedrizzi, 1991). The main differ-
ence between the probabilities lies in the fact that 
the m function does not need to be specified for 
all elements of the event and only for some of the 
subsets (Demotier, 2006; Yager, 1987).  
The DST gives the possibility to combine the 
opinions of various experts and consequently the 
risk assessment of failure in the water distribution 
systems. The theory of mathematical evidence al-
lows assigning each premise not one but two val-
ues (Alim, 1988; - ). 
Apart from modelling the uncertainty it makes 
possible to obtain a numerical value (Luo & 
Caselton, 1997). The proposed method can be 
used when operating data are not sufficient for sta-
tistical and probabilistic analysis, but can be the 
basis (together with the experience and 
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knowledge) for expert opinion regarding the level 
of failure risk ( rzewska-Cie lak, 2011). 
The combining of the information contained in the 
two sets of experts opinions through two hypoth-
eses gives the opportunity to update their 
knowledge, which has a beneficial effect on deci-
sion-making and failure risk management. The re-
sult is a new subset of possible hypotheses with 
the new values characterizing the possibility of in-
dividual risk categories. This process can be con-
tinued as long as the information is coming from 
the experts, as to obtain the most reliable results. 
Application of the theory of mathematical evi-
dence to failure risk analysis of water supply net-
work should be used in the process of risk man-
agement, in particular based on the collection, 
verification and grouping data and hypotheses 

-  2011).  
Only hypotheses that are not in conflict are con-
sidered, and contradictory hypotheses are ignored 
by standardization.  
Analysis of the failure risk with the use of the DST 
is based on the analysis of opinions of experts, 
who assess (giving hypothesis and values of the 
belief function) the possibility of risk level 

-  2011). 
 
7.4. Failure risk analysis of water  

distributions systems using hydraulic 
models 

 

To help minimize the consequences of the failure 
of the water supply pipeline and hence range, du-
ration, and size of interruptions in water supply, 
the hydraulic models are developed in EPANET 
2, mapping the network operation. It allows to 
simulate failure of individual network sections de-
fining the scope of the impact of the section ex-
clusion on the network operation. 
It should be noted that the water supply system 
constitutes a set of interrelated elements which 
work affects other elements. The parameters 
which describe the operation of these elements 
are, among others, the flow rate, pressure, and 
flow resistance. The consequence of such struc-
ture is the need for modelling the entire water sup-
ply system (Pietrucha-Urbanik & 2020). 
Before performing the simulation, the water de-
mand is updated for each node of the model. The 
pipes of the model are assigned to the individual 
streets along which they are laid, according to the 
updated map obtained from the water company. In 

the model, the number of water meters in the street 
and the number of inhabitants supplied from the 
given pipe are determined. The value of the indi-
vidual water demand is established after taking 
into account the work of tanks, reservoirs, and 
therefore cooperation with the pumping station, 
readings of water meters, and water level fluctua-
tions in the expansion tanks. This allows deter-
mining the daily and hourly water demand (Pie-
trucha- , 2017). 
A major limitation of the method is to have the 
revised hydraulic model of water supply network, 
the construction of which is time-consuming, re-
quires a series of data, which many water-supply 
companies do not possess, such as diameter and 
absolute roughness of pipes built in the first half 
of the twentieth century, and finally the need to 
calibrate the model. In practice, only a few water-
works have verified the hydraulic models that can 
be used in the presented method (
Pietrucha-Urbanik, 2019). 
 
8. Conclusion 
 

The water supply system is characterized by a 
continuous operation, its reliable and safe opera-
tion has a direct impact on the quality of life of 
water consumers.  
The reliability analysis of the water network, as 
well as a precise database of operational infor-
mation of the system have a significant impact on 
the correctness of performed analysis and the final 
result of the reliability analysis. Therefore, to per-
form the proper analysis, the failure database con-
sisting of the failure protocol should be devel-
oped. 
Failures in the water supply system do not occur 
without a cause, often appear in a chain of unde-
sirable events, they are also a result of making 
wrong decisions and poor management, resulting 
in a negative impact on the water supply system 
operation. To improve the current situation of the 
water supply system and reduce or regulate the 
pressure in the water supply network, monitoring 
of the water network should be provided. Addi-
tionally, modernization of the valves in the distri-
butional pipe and modernization of the existing 
water supply system, including Active Leak De-
tection, should be implemented. 
Risk and failure analyses in the water supply sys-
tem should be standardized during system opera-
tion and may be considered as a tool to support 
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decisions made in the proper risk-informed man-
agement process. 
The analysis of the water network failures can 
contribute to the assessment of the technical state 
of networks, which can help in planning potential 
repairs and, consequently, contribute to preven-
tion and reduction in the number of failures, as 
well as minimize their consequences. The devel-
opment of appropriate failure assessment methods 
contributes to reducing the possible consequences 
of disasters; helps engineers, designers, or gov-
ernment officials to make correct decisions re-
garding the selection of the optimal solution for 
technical facilities; and provides means for secur-
ing their users and the surrounding environment. 
In the world today, the development of technology 
has brought many benefits, but it has also contrib-
uted to the emergence of many threats. Through 
such techniques, terrorists have access to chemi-
cal-biological-radiological-nuclear hazard vectors 
(CBRN) and modern information and communi-
cation technologies (ICT). Therefore, failure anal-
ysis related to the operation of all technical sys-
tems should now be a priority action undertaken 
by the appropriate stakeholders. 
Water networks are continuing to increase in 
length, what leaves fully justified efforts to de-
velop new research methods that will allow for de-
terminations of potential risks. Developed studies 
supported by the experience and expert 
knowledge constitute more-effective methods of 
monitoring water networks, and seeking to protect 
them against failure.  
The considerations presented here may constitute 
a basis for further research, proving helpful in a 
process of risk management that should start by 
determining priority problems, with the next step 
then being the formulation of management princi-
ples. Technical solutions adopted should then be 
optimized from the point of view of effects antic-
ipated and sums invested. The chosen solution 
should be implemented, and its functioning mon-
itored to provide for verification of the method, as 
well as the determination of limitations on risk 
that have been achieved. 
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