PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A variant of Jensen’s functional equation on semigroups

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We determine the solutions f : S → H of the following functional equation f(xy) + f(σ(y)x) = 2f(x), x,y∈S, and the solutions f1, f2, f3 : M → H of the functional equation f1(xy) + f2(σ(y)x) = 2f3(x), x,y∈M, where S is a semigroup, M is a monoid, H is an abelian group 2-torsion free, and σ is an involutive automorphism.
Wydawca
Rocznik
Strony
414--420
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences, IBN Tofail University BP: 14000. Kenitra, Morocco
autor
  • Department of Mathematics E.N.S.A.M, Moulay Ismail University B.P : 15290 Al Mansour, Meknes, Morocco
autor
  • Department of Mathematics, Faculty of Sciences, IBN Tofail University BP: 14000. Kenitra, Morocco
Bibliografia
  • [1] J. Aczél, Lectures on functional equations and their applications, Math. Sci. Eng., Vol. 19, Academic Press, New York-London, 1966.
  • [2] B. R. Ebanks, H. Stetkær, D’Alembert other functional equation on monoids with an involution, Aequationes Math. 89 (2015), 187–206.
  • [3] B. R. Ebanks, H. Stetkær, On Wilson’s functional equations, Aequationes Math. 89 (2015), 339–354.
  • [4] B. Fadli, D. Zeglami, S. Kabbaj, A variant of Wilson’s functional equation, Publ. Math. Debrecen 87(3–4) (2015), 415–427.
  • [5] P. De Place Friis, D’Alembert’s and Wilson’s equations on Lie groups, Aequationes Math. 67 (2004), 12–25.
  • [6] C.T. Ng, Jensen’s functional equation on groups, Aequationes Math. 39 (1990), 85–99.
  • [7] C.T. Ng, Jensen’s functional equation on groups, II , Aequationes Math. 58 (1999), 311–320.
  • [8] C.T. Ng, Jensen’s functional equation on groups, III , Aequationes Math. 62 (2001), 143–159.
  • [9] C.T. Ng, A Pexider–Jensen functional equation on groups, Aequationes Math. 70 (2005), 131–153.
  • [10] J. C. Parnami, H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math. 43 (1992), 211–218.
  • [11] P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), 255–261.
  • [12] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144–172.
  • [13] H. Stetkær, On Jensen’s functional equation on groups, Aequationes Math. 66 (2003), 100–118.
  • [14] H. Stetkær, On a variant of Wilson’s functional equation on groups, Aequationes. Math. 68 (2004), 160–176.
  • [15] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co, Singapore, 2013.
  • [16] H. Stetkær, A variant of d’Alembert’s functional equation, Aequationes Math. 89 (2015), 657–662.
  • [17] D. Zeglami, B. Fadli, S. Kabbaj, On a variant of μ-Wilson’s functional equation on a locally compact group, Aequationes Math. 89 (2015), 1265–1280.
  • [18] D. Zeglami, The superstability of a variant of Wilson’s functional equation on an arbitrary group, Afr. Math. 26 (2015), 609–917.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-847e79f7-3a38-48ed-97ee-d877fdef7ca0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.