PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface chemistry and flotation properties of galena and pyrite particles in the presence of xanthate- monothiophosphate- thiocarbamate collectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, surface chemistry and flotation properties of the gold-bearing galena and pyrite minerals of Menderes region, Izmir, Turkey were investigated with the use of xanthate-thiocarbamate-monothiophosphate collectors. In this context, the micro-flotation experiments, the zeta potential, and bubble-particle attachment time measurements were conducted in the presence of Thiophosphate (Aero S-8045), Xanthate (SIBX), and Thiocarbamate (Aero float MX-505) collectors. In the case of micro-flotation experiments, the MX-505 exhibited higher flotation efficiency for both minerals compared to SIBX and S-8045 collectors. In the micro-flotation tests conducted on galena and pyrite, while the flotation recovery of 99.82% and 81.96% were obtained with MX-505, the flotation recovery of 89.64% and 62.50% were reached in the case of using SIBX. Furthermore, the S-8045 resulted in the flotation recovery s of 75.09% and 25.45% for galena and pyrite, respectively. In the case of zeta potential experiments as a function of pH, the galena mineral showed a negative charge between -17.22 to -41.42 mV at pH 5 - 11, no point of zero charge (pzc) was determined, and the pzc of pyrite was determined as pH≈8. The bubble-particle attachment time experiments performed in the presence of S-8045, SIBX, and MX-505 collectors indicated that the attachment efficiency was 100% in the presence of MX-505 at 12.5-75 g/Mg dosages and 1-1000 ms contact times. These results revealed that there was an extraordinarily strong interaction between the galena/pyrite and the air bubbles in the presence of MX-505. The results obtained within this study indicated that galena and pyrite minerals showed inherently less than 25% natural floatability which can only be enhanced under specific conditions. The results obtained within this study indicated that galena and pyrite minerals showed inherently low natural floatability which can only be enhanced under specific conditions. In the tests conducted on these minerals, galena mineral showed higher than %20 natural floatability compared to pyrite mineral, and collectors produced from thiocarbamates have shown greater effectiveness compared to xanthate and thiophosphate.
Rocznik
Strony
art. no. 167947
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
  • Istanbul University-Cerrahpasa, Department of Mining Engineering, Buyukcekmece, Istanbul, Turkey
autor
  • Istanbul University-Cerrahpasa, Department of Mining Engineering, Buyukcekmece, Istanbul, Turkey
autor
  • Istanbul University-Cerrahpasa, Department of Mining Engineering, Buyukcekmece, Istanbul, Turkey
  • Istanbul Technical University, Department of Mineral Processing Engineering, Maslak, Istanbul, Turkey
Bibliografia
  • ACKERMAN P.K., HARRIS G.H., KLIMPEL R.R., APLAN F.F., 1987. Evaluation of flotation collectors for copper sulfides and pyrite, І. Common sulfhydryl collectors. International Journal of Mineral Processing, 21, 105-127.
  • ALBIJANIC, B., OZDEMIR, O., HAMPTON, M.A., NGUYEN, P.T., NGUYEN, A.V., BRADSHAW, D., 2014. Fundamental aspects of bubble–particle attachment mechanism in flotation separation, Minerals Engineering 65, 187–195.
  • ALBIJANIC, B., OZDEMIR, O., NGUYEN, A.V., BRADSHAW, D., 2010. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid and Interface Science, 159 (1), 1–21.
  • ALBIJANIC, B., AMINI, E., WIGHTMAN, E., OZDEMIR, O., NGUYEN, BRADSHAW, D.J., 2011. A relationship between the bubble–particle attachment time and the mineralogy of a copper–sulphide ore. Minerals Engineering, 24, 1335–1339.
  • BAE, S., MANNAN, M.B., & LEE, W., 2012. Adsorption of cationic cetylpyridinium chloride on pyrite surface. Journal of Industrial and Engineering Chemistry, 18(4), 1482-1488.
  • BU, Y., HU, Y., SUN, W., GAO, Z., & LIU, R., 2018. Fundamental flotation behaviors of chalcopyrite and galena using o-isopropyl-n-ethyl thionocarbamate as a collector. Minerals, 8(3), 115.
  • BULATOVIC, S.M., 2007. Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores. Elsevier, 323-351.
  • CHEN, J., LONG, X., & CHEN, Y., 2014. Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: a DFT study. The Journal of Physical Chemistry C, 118(22), 11657-11665.
  • CHEN, W., CHEN, F., ZHANG, Z., TIAN, X., BU, X., & FENG, Q., 2021. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems. Minerals Engineering, 160, 106705.
  • CONSUEGRA, G.L., KUTSCHKE, S., RUDOLPH, M., & POLLMANN, K., 2020. Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Minerals Engineering, 145, 106062.
  • CUI, W., ZHANG, J., & CHEN, J., 2021. Surface proximity effect of galena and its influence on synergistic adsorption behavior. Applied Surface Science, 567, 150847.
  • DELANY, B., 1940. Flotation. Industrial & Engineering Chemistry, 32(9), 1172-1173.
  • DONG, Z., JIANG, T., XU, B., LI, Q., ZHONG, H., & YANG, Y., 2021. Selective flotation of galena using a novel collector S-benzyl-N-ethoxy carbonyl thiocarbamate: An experimental and theoretical investigation. Journal of Molecular Liquids, 330, 115643.
  • ELIZONDO-ÁLVAREZ, M.A., FLORES-ÁLVAREZ, J.M., DÁVILA-PULIDO, G.I., & URIBE-SALAS, A., 2017. Interaction mechanism between galena and calcium and sulfate ions. Minerals Engineering, 111, 116-123.
  • ELIZONDO-ÁLVAREZ, M.A., DÁVILA-PULIDO, G.I., BELLO-TEODORO, S., & URIBE-SALAS, A., 2018. Role of pH on the adsorption of xanthate and dithiophosphinate onto galena. Canadian Metallurgical Quarterly, 58(1), 107-115.
  • FAIRTHORNE, G., FORNASIERO, D., & RALSTON, J., 1997. Interaction of thionocarbamate and thiourea collectors with sulphide minerals: a flotation and adsorption study. International Journal of Mineral Processing, 50(4), 227-242.
  • FENG, Q.C., WEN, S.M., BAI, X., CHANG, W.H., CUI, C.F., ZHAO, W.J., 2019. Surface modification of smithsonite with ammonia to enhance the formation of sulfidation products and its response to flotation. Minerals Engineering, 137, 1–9.
  • FINKELSTEIN, N.P., ALLISON, S.A., LOVELI, V.M. and STEWART, B.V., 1975. Natural and induced hydrophobicity in sulfide mineral systems, in Advances in Interfacial Phenomena of Particulate: Solid/Gas Systems. ed. P. Somasundaran and R.B. Grieves, Am. lost. Chem. Engrs., New York, 165-175.
  • FORNASIERO, D., & RALSTON, J., 1992. Iron hydroxide complexes and their influence on the interaction between ethyl xanthate and pyrite. Journal of Colloid and Interface Science, 151(1), 225-235.
  • FORSON, P., SKINNER, W., & ASAMOAH, R., 2021. Decoupling pyrite and arsenopyrite in flotation using thionocarbamate collector. Powder Technology, 385, 12-20.
  • FUERSTENAU, D.W., MISHRA, R.K., 1980. On the mechanism of pyrite flotation with xanthate collectors. In: Jones, J.J. (Ed.), Complex Sulfide Ores. The Institution of Mining and Metallurgy, London, pp. 271 – 278.
  • FUERSTENAU, M.C., & SABACKY, B.J., 1981. On the natural floatability of sulfides. International Journal of Mineral Processing, 8(1), 79-84.
  • GAUDIN, A.M., & MALOZEMOFF, P., 1932. Recovery by flotation of mineral particles of colloidal size. The Journal of Physical Chemistry, 37(5), 597-607.
  • GAUDIN, A.M., SCHUHMANN JR, R., & SCHLECHTEN, A.W., 1942. Flotation kinetics. II. The effect of size on the behavior of galena particles. The Journal of Physical Chemistry, 46(8), 902-910.
  • GAUDIN, A.M., MIAW, H.I. & SPEDDEN, H.R., 1957. Native floatability and crystal structure., 2nd Int. Congr. of Surface Activity, vol: 2, S. FS 451.
  • GLEMBOTSKII, V.A., 1953. The time of attachment of air bubbles to mineral particles in flotation and its measurement. Izv. Akad. Nauk SSSR (OTN), No. 11: 1524-1531.
  • GLEMBOTSKII, V.A. KLASSEN, V.I. and PLAKSIN, I.N., 1963. Flotation, Primary Sources, N.Y., S.19.
  • GLEMBOTSKII, V.A., 1978. Theoretical principles of forecasting and modifying collector properties. Tsvet Metally, 51(2), 86.
  • GU, G., XU, Z., NANDAKUMAR, K., & MASLIYAH, J., 2003. Effects of physical environment on induction time of air–bitumen attachment. International Journal of Mineral Processing, 69(1-4), 235-250.
  • GUNGOREN, C., OZDEMIR, O., WANG, X., OZKAN, S.G., MILLER, J.D., 2019. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry, 52, 446-454.
  • HERD, H.H., & URE, W., 1941. Surface chemistry in the flotation of galena. The Journal of Physical Chemistry, 45(1), 93-106.
  • HODOUIN, D., JAMSA-JOUNELA, S.L., CARVALHO, M.T., & BERGH, L., 2001. State of the art and challenges in mineral processing control. Control Engineering Practice, 9(9), 995-1005.
  • HUANG, X., HUANG, K., JIA, Y., WANG, S., CAO, Z., & ZHONG, H., 2019. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chemical Engineering Science, 205, 220-229.
  • HUANG, X., YUAN, X., YANG, H., ZHANG, R., LIU, G., & ZENG, J., 2023. Evaluating the adsorption mechanism of a novel thiocarbamate on chalcopyrite and pyrite particles. Advanced Powder Technology, 34(2), 103935.
  • IKUMAPAYI, F., MAKITALO, M., JOHANSSON, B., & RAO, K.H., 2012. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena. Minerals Engineering, 39, 77-88.
  • JIANG, C.L., WANG, X.H., & PAREKH, B.K., 2000. Effect of sodium oleate on inhibiting pyrite oxidation. International Journal of Mineral Processing, 58(1-4), 305-318.
  • JIN, J., WANG, X., GAO, P., LIU, J., ZHU, Y., & HAN, Y., 2021. Selective adsorption behavior and mechanism of a high-performance depressant in the flotation separation of pyrite from talcum. Journal of Molecular Liquids, 325, 114707.
  • KOCABAG, D., 1983. The oleophilicity/hydrophobicity of galena and pyrite in two-liquid flotation. Ph.D. thesis, Mineral Resources Engineering, 52-55.
  • KOCABAG, D., SHERGOLD, H.L., & KELSALL, G.H., 1990. Natural oleophilicity/hydrophobicity of sulphide minerals. II. Pyrite. International Journal of Mineral Processing, 29(3-4), 211-219.
  • KOSMULSKI, M., 2009. Surface charging and points of zero charge. (Vol. 145). CRC press.
  • LONG, X., CHEN, Y., CHEN, J., XU, Z., LIU, Q., & DU, Z., 2016. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study. Applied Surface Science, 389, 103-111.
  • LIU G.Y., XIAO J.J., ZHOU D.W., ZHONG, H., CHOI, P., XU, Z.H., 2013. A DFT study on the structure-reactivity relationship of triphosphorous acids as flotation collectors with sulfide minerals: Implication of surface adsorption. Colloids Surface A-Physicochemical Engineering Aspects, 434:243-252.
  • MCKEE, D.J., 1991. Automatic flotation control-a review of 20 years of effort. Minerals Engineering, 4(7-11), 653-666.
  • MCFADZEAN, B., CASTELYN, D.G., & O’CONNOR, C.T., 2012. The effect of mixed thiol collectors on the flotation of galena. Minerals Engineering, 36, 211-218.
  • MCFADZEAN, B., MHLANGA, S.S., & O’CONNOR, C.T., 2013. The effect of thiol collector mixtures on the flotation of pyrite and galena. Minerals Engineering, 50, 121-129.
  • MKHONTO, P.P., ZHANG, X., LU, L., XIONG, W., ZHU, Y., HAN, L., & NGOEPE, P.E., 2022. Adsorption mechanisms and effects of thiocarbamate collectors in the separation of chalcopyrite from pyrite minerals: DFT and experimental studies. Minerals Engineering, 176, 107318.
  • NAGARAJ, D.R., 1988. The chemistry and application of chelating or complexing agents in minerals separations. In Reagents in Mineral Technology, 257-334.
  • NAGARAJ, D.R., RAVISHANKAR, S.A., 2007. Froth flotation: A century of innovation. In: Fuerstenau, M.C., Jameson, G.J., Yoon, R.-H. (Eds.), Society for Mining, Metallurgy, and Exploration, Inc. (SME), pp. 375–424.
  • NGUYEN, A.V., 1994. The collision between fine particles and single air bubbles in flotation. Journal of Colloid Interface Science, 162(1): 123-128.
  • NGUYEN, A.V., SCHULZE, H.J., 2004. Colloidal Science of Flotation. CRC Press, Florida, USA.
  • NIKOLAEV, A.A., BATKHUYAG, A., & GORYACHEV, B.E., 2018. Mineralization kinetics of air bubble in pyrite slurry under dynamic conditions. Journal of Mining Science, 54(5), 840-844.
  • OZDEMIR, O., KARAKASHEV, S.I., NGUYEN, A.V., & MILLER, J.D., 2006. Adsorption of carbonate and bicarbonate salts at the air–brine interface. International Journal of Mineral Processing, 81(3), 149-158.
  • OZDEMIR, O., KARAGUZEL, C., NGUYEN, A.V., CELIK, M.S. and MILLER, J.D., 2009. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22(2), 168-175.
  • OZDEMIR, O., TARAN, E., HAMPTON, M.A., KARAKASHEV, S.I., & NGUYEN, A.V., 2009. Surface chemistry aspects of coal flotation in bore water. International Journal of Mineral Processing, 92(3-4), 177-183.
  • ÖZÜN, S., & ERGEN, G., 2019. Determination of optimum parameters for flotation of galena: Effect of chain length and chain structure of xanthates on flotation recovery. ACS omega, 4(1), 1516-1524.
  • OWUSU, C., E ABREU, S.B., SKINNER, W., ADDAI-MENSAH, J., & ZANIN, M., 2014. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95.
  • PARTRIDGE, A.C, SMITH G.W., 1971. Trans. Industry Mineral Metallurgy, C80, 199.
  • PECINA-TREVIÑO, E. T., URIBE-SALAS, A., NAVA-ALONSO, F., & PÉREZ-GARIBAY, R., 2003. On the sodium-diisobutyl dithiophosphinate (Aerophine 3418A) interaction with activated and unactivated galena and pyrite. International Journal of Mineral Processing, 71(1-4), 201-217.
  • QI, X., LI, X., LIANG, Y., WANG, H., GUO, W., CONG, X., & ZHANG, H., 2020. Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation. Journal of Industrial and Engineering Chemistry, 87, 136-144.
  • SHEN, Y., NAGARAJ, D.R., FARINATO, R., & SOMASUNDARAN, P., 2016. Study of xanthate decomposition in aqueous solutions. Minerals Engineering, 93, 10-15.
  • SU, L., XU, Z., & MASLIYAH, J., 2006. Role of oily bubbles in enhancing bitumen flotation. Minerals Engineering, 19(6-8), 641-650.
  • SOMASUNDARAN, P., & NAGARAJ, D.R., 1984. Chemistry and applications of chelating agents in flotation and flocculation. Reagents in Mineral Industry, 209-219.
  • SWAINSON, S.J., & ANDERSON, A.E., 1931. The promoter activity of alkyl xanthates. Transactions of The Electrochemical Society, 60(1), 329.
  • VILINSKA, A., HANUMANTHA R.K., & FORSSBERG, K.E., 2007. Selective coagulation in chalcopyrite/pyrite mineral system using Acidithiobacillus group bacteria. Advanced Materials Research, 20, 366-370.
  • XING, Y., GUI, X., CAO, Y., 2017. Effect of bubble size on bubble-particle attachment and film drainage kinetics – a theoretical study. Powder Technology, 322, 140–146.
  • YE, Y. & MILLER, J.D., 1988. Bubble/particle contact time in the analysis of coal flotation. Coal Prep. (Gordon & Breach), 5(3-4): 147-166.
  • YOON, R.H. & YORDAN, J.L., 1991. Induction time measurements for the quartz-amine flotation system. Journal of Colloid and Interface Science, 141(2): 374-383.
  • ZHANG, W., SUN, W., HU, Y., CAO, J., & GAO, Z., 2019. Selective flotation of pyrite from galena using chitosan with different molecular weights. Minerals, 9(9), 549.
  • ZHAO, C.H., CHEN, J.H., WU, B.Z., & LONG, X.H., 2014. Density functional theory study on natural hydrophobicity of sulfide surfaces. Transactions of Nonferrous Metals Society of China, 24(2), 491-498.
  • ZHAO, W.J., LIU, D.W., FENG, Q.C., WEN, S.M., CHANG, W.H., 2019. DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (101) surface. Minerals Engineering, 141 105846.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-847e443d-0d76-42a0-8d18-b95dea7f2dec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.