PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance and evaluation of OTFS modulation systems using different high mobility channels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research examines how Nextgen wireless systems can benefit from Orthogonal Time Frequency Space (OTFS) modulation in different high-mobility channel situations. We test the BER performance of OTFS and OFDM with varying lengths of symbol under varied transmit power (TX power) conditions utilizing simulations employing Doubly-Selective, Extended Vehicular A (EVA), Unmanned Aerial Vehicle (UAV), and Extended Typical Urban (ETU) channel models. Compared to OFDM, OTFS reliably reduces the impact of multipath propagation and Doppler spread more effectively. Importantly, to maximize BER performance in UAV channel simulations, the OTFS symbol length had to be carefully selected; increasing the symbol length without thinking about it led to decreasing results. It was shown that OTFS is connected to a few resources in the ETU channel due to its minimal demand on TX Power. Based on these results, OTFS seems to be a good modulation technique for demanding mobile communication applications, particularly for UAV communications where picking the right parameters is key. Methods for adaptive OTFS that can change symbol length and other parameters in reaction to channel circumstances in real-time should be the focus of future studies.
Słowa kluczowe
Twórcy
  • University of Technology, Baghdad, Iraq
  • University of Technology, Baghdad, Iraq
  • Wasit University, Wasit, Iraq
Bibliografia
  • [1] J. G. Proakis, and M. Salehi, Digital Communications. New York, NY, USA: McGraw-Hill, 2008.
  • [2] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch and R. Calderbank, “Orthogonal time frequency space modulation,” in Proc. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, 2017, pp. 74-80, https://doi.org/10.1109/WCNCW.2017.7916761
  • [3] Y. Zeng, R. Zhang, and T. J. Lim, "Throughput Maximization for UAV-Enabled Mobile Relaying with Optimized Trajectory and Resource Allocation," IEEE Trans. Mobile Comput., vol. 18, no. 10, pp. 2755-2767, 1 Oct. 2019, https://doi.org/10.1109/TMC.2018.2872473
  • [4] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Systems, vol. CS-11, no. 4, pp. 360-393, Dec. 1963.
  • [5] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: IEEE Press, 1994.
  • [6] Gunturu A, Godala AR, Sahoo AK, Chavva AKR (2021) Performance analysis of OTFS waveform for 5G NR mmwave communication system. In: Proc. IEEE Wireless Commun. and Networking Conf., pp 1-6. Nanjing, China.
  • [7] Liu Y, Gao F, Ma J, Wang X (2019) Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system. IEEE J Sel Areas Commun 38(9):1994-2009.
  • [8] Ramachandran MK, Chockalingam A (2018) MIMO-OTFS in high-Doppler fading channels: signal detection and channel estimation. In: Proc. IEEE Global Commun. Conf., pp 1-6. Abu Dhabi, United Arab Emirates.
  • [9] Shen W, Dai L, An J, Fan P, Heath RW (2019) Channel estimation for orthogonal time frequency space (OTFS) massive MIMO. IEEE Trans on Signal Processing 67(16):4204-4217.
  • [10] Li M, Gao F, Fan P, Dobre OA (2021) A new path division multiple access for the massive MIMO-OTFS networks. IEEE J Sel Areas Commun 39(4):903-918.
  • [11] Gunturu A, Godala AR, Sahoo AK, Chavva AKR (2021) Performance analysis of OTFS waveform for 5G NR mm-wave communication system. In: Proc. IEEE Wireless Commun. and Networking Conf., pp 1-6. Nanjing, China.
  • [12]. P. H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994.
  • [13] F. Hasegawa, A. Taira, G. Noh, et al., “High-speed train communications standardization in 3gpp 5g nr,” IEEE Communications Standards Magazine, vol. 2, no. 1, pp. 44-52, 2018.
  • [14] J. Kim, M. Schmieder, M. Peter, et al., “A comprehensive study on mm-wave based mobile hotspot network system for high-speed train communications, IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2087-2101, 2018.
  • [15] M. Zhou, “Analysis on the technical characteristics of wireless communication between vehicles and grounds of Shanghai maglev line,” Urban Mass Transit, vol. 13, pp. 26-29, 2010.
  • [16] F. Lampel, A. Alvarado, and F. M. Willems, “Orthogonal time frequency space modulation: a discrete zak transform approach,” arXiv preprint arXiv:2106.12828, 2021.
  • [17] Hong, Y., Thaj, T., Viterbo, E. (2022). Delay-Doppler Communications: Principles and Applications. Netherlands: Elsevier Science. [18] Hui Xiao; A.G. Burr: “Simulation of the time-selective environment by 3GPP spatial channel model and analysis on the performance evaluation by the CMD metric” International Conference on Wireless Communications, Networking and Mobile Computing, 2005.
  • [19] Bentolhoda Kazemzadeh Osgoei. Designing a high data rate wireless communication system in a doubly selective channel: TransPod system. Networking and Internet Architecture [cs.NI]. Université de Limoges, 2024. English.NNT: 2024LIMO0055.
  • [20] Eldemiry, Ahmed, Abdelazim A. Abdelsalam, Heba M. Abdel-Atty, Ahmed Azouz, and Walid Raslan. "Overview of the orthogonal time-frequency space for high mobility communication systems." In 2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA), pp. 1-6. IEEE, 2022.
  • [21] Rubio, C. J. V. (2023). “Intelligent sensing and learning for advanced MIMO communication systems”. https://doi.org/10.54337/aau596083552
  • [22] Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M., & Dobbins, P. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys & Tutorials, 20(4), 2804-2821.
  • [23] Oestges, C., & Quitin, F. (2021). Inclusive radio communications for 5G and beyond. Academic Press.
  • [24] F. Hlawatsch and G. Matz, Wireless communications over rapidly time-varying channels. Academic Press, 2011.
  • [25] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, ETSI TR 102 638, V1.1.1, Jun. 2009. [26] A. Panagopoulos, P.D.M. Arapoglou, and P. Cottis,” Satellite communications at KU, KA, and V bands: Propagation impairments and mitigation techniques,” IEEE Commun. Surv. Tuts., vol. 6, no. 3, pp. 2-14, 2004.
  • [26] P. Chini, G. Giambene and S. Kota” A survey on mobile satellite systems,” Int. J. Satell. Commun. Networking, vol. 28, no. 1, pp. 29-57, 2009. [27] Hu Zhengye, Gu Dekang “ETU calibration instrument” 20 Mar 2013.
  • [28] H. Asplund, K. Larsson, and P. Okvist, "How Typical is the "Typical Urban" channel model?" VTC Spring 2008 - IEEE Vehicular Technology Conference, Singapore, 2008, pp. 340-343.
  • [29] Ramachandran, M. K., Surabhi, G. D., & Chockalingam, A. (2020). OTFS: A New Modulation Scheme for High-Mobility Use Cases. Journal of the Indian Institute of Science, 100(2), 315-336.
  • [30] Aziz Altaf Khuwaja, Yunfei Chen, Nan Zhao, Mohamed-Slim Alouini, “A Survey of Channel Modeling for UAV Communications” arXiv:1801.07359v1 [eess.SP] 23 Jan 2018.
  • [31] Mohammed Kadhim, Salman Goli, Amer S. Elameer, “Analysis and Simulation of LTE Downlink: EPA and ETU model” 2018 International Conference on Advanced Science and Engineering (ICOASE), Kurdistan Region, Iraq.
  • [32] Thi My Chinh Chu, Hans‑Jurgen Zepernick, Alexander Westerhagen, Anders Höök, Bo Granbom, “Performance Assessment of OTFS Modulation in High Doppler Airborne Communication Networks” Mobile Networks and Applications (2022) 27:1746-1756.
  • [33] Christoph F. Mecklenbra, Andreas F. Molisch, Johan Karedal, Fredrik Tufvesson, Alexander Paier, Laura Bernado, Thomas Zemen, Oliver Klemp, Nicolai Czink, “Vehicular Channel Characterization and Its Implications for Wireless System Design and Performance” 2011 IEEE.
  • [34] Wantanee Viriyasitavat, Mate Boban, Hsin-Mu Tsai, and Athanasios V. Vasilakos, “Vehicular Communications: Survey and Challenges of Channel and Propagation Models” arXiv:1505.06004v2 [cs.NI] 26 May 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-847bd668-f8ff-4893-8717-eaae767aa1ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.