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Abstract: In the ever increasing number of robotic system applications in the industry, the robust and fast visual recognition and pose es-
timation of workpieces are of utmost importance. One of the ubiquitous tasks in industrial settings is the pick-and-place task where the ob-
ject recognition is often important. In this paper, we present a new implementation of a work-piece sorting system  
using a template matching method for recognizing and estimating the position of planar workpieces with sparse visual features. The pro-
posed framework is able to distinguish between the types of objects presented by the user and control a serial manipulator equipped with 
parallel finger gripper to grasp and sort them automatically. The system is furthermore enhanced with a feature that optimizes  
the visual processing time by automatically adjusting the template scales. We test the proposed system in a real-world setup equipped with   
a UR5 manipulator and provide experimental results documenting the performance of our approach. 
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1. INTRODUCTION 

A typical configuration of a pick-and-place task is presented 
in Fig. 1. A vision system is used to recognize and estimate the 
pose of objects located in the workcell. This information is subse-
quently used by the user application to control the robotic manipu-
lator in order to grasp the objects and place them in the designat-
ed target areas. Such a setup typically requires accurate calibra-
tion.  

 
Fig. 1. Typical pick-and-place task 

In this paper, we present an implementation of a 2D object 
recognition and sorting task using a robot manipulator and a 
vision system.  

The successful execution of the pick-and-place task, where 
multiple types of objects are present, requires solving an object 

recognition problem. In recent years, the problem of sorting of 
objects of different shape, size and colour was extensively re-
searched in the literature (Saxena et al., 2007; Kumar et al., 2014; 
Willaume et al., 2016; Nalini and Gondkar, 2017).  

The research is often focused on the problems encountered in 
successful implementation of the system. These problems in the 
context of the pick-and-place task revolve around two most im-
portant aspects: quick and correct visual recognition of the object, 
and a stable grasp (Amagai and Takase, 2017).  

On the vision system side, the current trend in the industry is 
to replace the mechanically forced object position with ‘smart’ 
recognition by the use of a vision based object recognition               
(Steger et al., 2017). The performance of the vision system is 
chiefly impacted by the object complexity, the number of objects 
present in the scene, the lightning conditions and the calibration 
quality. Solving the generalized vision problem is often not feasi-
ble due to practical considerations. Therefore, research on visual 
based object recognition is usually restricted to particular classes 
of the objects, for example, geometrical characteristics, colour or 
size. Despite significant progress in the recent years, still there 
are issues that are not handled by the vision systems very well. 
These include, for example, segmentation and recognition of non-
rigid objects, where the observed shape is allowed to vary and 
there is lightning imbalance due to shadows, reflections and the 
object texture (Hagelskjær et al., 2017). 

Object recognition is an interesting research area, very im-
portant in robotic applications. Multiple methods are currently 
known. One of the earliest approaches involved matching the 
features of the known object model (Grimson, 1990; Ellgammal, 
2005; Sibiryakov, 2008) or shape primitives based recognition 
(Krivic and Solina, 2004; Nieuwenhuisen et al., 2012,). Currently, 
a very popular trend is to use machine learning algorithms (Cabre 
et al., 2013). Most of these approaches rely on the feature extrac-
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tion and matching methods, such as SIFT (Lowe, 2004; Collet, et 
al. 2011) or SURF (Bay et al., 2008). SIFT algorithm is robust in 
respect to cluttered background, perspective shift, lightning condi-
tions, scaling and rotation, but requires precise image segmenta-
tion. SURF is considered to have better performance. Still, both of 
these methods suffer issues due to uniform colour scheme and 
smooth contours of the recognized objects.  

The vision systems used in industry and research can be 
classified into different categories. One of such classifications 
involves the distinction on the camera placement, which can be 
fixed in the workcell or attached to the robot manipulator 
(Chaumetter and Hutchinson, 2007; Corke, 2001; Flandin et al., 
2000). The latter case has recently resulted in the emergence of 
the visual servoing methods (Pessoa et al., 2018; Huang and Xu, 
2018; Amini and Banitsas, 2019). Both types of the vision systems 
offer advantages and shortcomings. The fixed camera system 
offers higher precision due to the stability of the calibration, while 
suffering from the limitation to the observed area and just one 
perspective. The moving camera allows for the observation of the 
scene from multiple vantage points, while having lower precision 
at the same time. Typically, the fixed camera vision systems are 
still used in most scenarios. The overview of our proposed system 
is presented in Fig. 2. Our system is divided into two parts: the 
offline template scale optimization process and the online process 
executed during the pick-and-place task realization. Both branch-
es of the system share the first two steps: the image acquisition 
using the vision system and the image rectification, where the 
distortions are removed from the acquired image. This is per-
formed based on the intrinsic camera calibration.  

 
Fig. 2. Proposed system implementation workflow diagram 

The offline branch of the system is responsible for preparing 
the templates for the template matching algorithm. Poor extrinsic 
camera-to-robot calibration – or even lack thereof – necessitates 
the assumption of multiple scales of templates, which greatly 
increases the computation time in the online phase. Our proposed 
solution uses this offline step to select the template scale that 
matches the object scale in the scene, thereby improving the 
vision system processing rate. 

The online branch of our system is concerned with controlling 
the manipulator in order to perform the pick-and-place task based 

on the information on the recognized object pose obtained 
through the vision system. We have subsequently tested our 
proposed approach in an industrial-based real experiment. We 
provide quantitative results on the performance of our template 
matching system, thereby proving the feasibility of its implementa-
tion in automizing pick-and-place tasks. 

2. METHODS 

In this section, we present the detailed description of the indi-
vidual components of our template matching system.  

2.1. Template matching 

Template matching is an image recognition technique based 
on comparing the predefined image (template) against the source 
image, in order to find areas with highest similarity. In this method, 
the template is sled over the source image and the ratio of similar-
ity is computed, which describes how well the template matches 
the image in specific position, according to the specified method. 
There are several comparison methods; we have chosen normal-
ized correlation coefficient, which is described in the equation (1). 

R(x, y) =  
∑ T′(x′,y′)∗I′(x+x′,y+y′)𝑥′,𝑦′

√∑ T′(x′y′)2∗∑ I′(x+x′,y+y′)2
𝑥′,𝑦′𝑥′,𝑦′

           (1) 

where: 𝐼 is image, 𝑇 - template, 𝑅 - matrix of matching results 
that contains values between 0 and 1, where 1 means perfect 
match and 0 means a complete mismatch.  

Template matching is a computationally complex algorithm the 
execution time of which increases with template and source image 
resolution. To speed-up the process, we used templates with 
lowest possible resolution, which maintained the geometry of the 
objects (i.e., lowest template resolution for which the different 
objects were still distinguished). We define the ratio between the 
actually used template width and this normalized width as the 
template scale.  

Owing to the fact that template matching algorithm is not scale 
and rotation invariant, there is a necessity to generate templates 
in multiple scales and rotation angles. Scaling is usually per-
formed by generating image pyramid with downsamples or up-
samples of the given template. However, we have implemented a 
less time-consuming approach by using only one optimal pre-
processed scale for every template (see 2.2). In order to define 
object rotation, every template has been rotated in range from 0° 
to 360° every 2°.  

The grasping poses can be defined for the objects by the user 
as the transform between the object’s CoG and the desired grasp 
pose. In case the grasp pose is not defined, an identity transform 
is assumed by default. 

2.2. Template scale optimization 

Since the system is designed to handle typical pick-and-place 
actions with the objects placed in the constant distance to the 
camera, no variation of the object image size is expected. Still, 
without prior camera-to-table pose calibration, the apparent size of 
the image is unknown. In order to escape the necessity of per-
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forming the time-consuming extrinsic calibration, it is possible to 
find the optimal template scale in the template pre-processing 
phase. 

In order to find a scale that provides the highest recognition 
efficiency for the given template, we have taken 20 images of 
scenes with single object placed in various orientations. For each 
scene, template has been generated in wide range of scales and 
compared against the object segmented from the scene. The 
optimal scale for the template has been designated as an average 
of those template scales, which gave the highest correlation coef-
ficient value for every image. The results of this process in our 
experiment are presented in Section 3.3. 

2.3. Experimental setup 

A laboratory setup at BUT was used to perform the real world 
experimental testing of the proposed method. The setup consists 
of a UR5 manipulator mounted in the aluminium frame workcell 
(see Fig. 3). The objects were placed on the surface of the table, 
where areas were designated for the object picking and place-
ment. The camera used was 1280 x 1024 [px] uEye Camera. 

 
Fig. 3. The experimental setup modelled in RobWorkStudio  

The UR5 manipulator used in the setup was equipped with a 
Schunk EVG55 electric gripper. The manipulator is capable of 
reaching the objects placed in the designated area and lifting up 
to 5 kg of weight. The experimental setup configuration is pre-
sented in Fig. 4. The ROS (Robot Operating System) package 
controlling the hardware is running on the laboratory workstation. 
The vision algorithm uses the OpenCV library to connect with the 
camera and process the image. The application uses ROS topics 
and services to control the robot and the gripper. 

 
Fig. 4. The experimental setup configuration 

3. RESULTS 

In order to test the performance of our template matching vi-
sion system in the real setup, we have executed a pick-and-place 
experiment. We have tested our recognition algorithm with high 
success rate for both simple and complex object geometries. For 
the experiment, we have selected three objects: crank (object 1), 
bracket (object 2) and spacer (object 3). These objects are pre-
sented in Fig. 5. The objects were selected such as to have 
sparse visual features. The two objects (crank and bracket) were 
chosen such as to test the capability of the system to distinguish 
between similar shapes. The third object (spacer) was provided as 
the control. 

 
Fig. 5. The objects selected for the experiment: a) crank; b) bracket;  

     c) spacer 

The experiment was performed as described below. 

3.1. Camera calibration 

Firstly, the intrinsic camera calibration was performed in order 
to rectify the distortion of the image. The calibration was done by 
presenting a chessboard calibration pattern to the sensor in 130 
poses and extracting the intrinsic camera matrix. This calibration 
was done using the OpenCV software package (Bradski, 2000).  
Next, the intensity analysis was performed in order to account for 
the lightning influence on the threshold for image segmentation 
(see Fig. 6). Sample images were taken, and the intensity histo-
gram generated, from which the segmentation threshold was 
derived. We used the following formula to calculate the segmenta-
tion threshold (2).  

 
I𝑡ℎ𝑟 = 0.5(I𝑜𝑏𝑗_𝑚𝑎𝑥 + I𝑏𝑔_𝑚𝑎𝑥)              (2) 

 
where: I𝑡ℎ𝑟 – segmentation threshold; I𝑜𝑏𝑗_𝑚𝑎𝑥 – object histogram 

peak; I𝑏𝑔_𝑚𝑎𝑥 – background histogram peak (see Fig. 6c).  

a) 
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b) 

 
c) 

 
Fig. 6. Image intensity analysis: a) Sample camera image; b) 3D image  
            intensity representation; c) Sample image intensity histogram 

3.2. Image-to-robot calibration 

In order to find the correspondence between the image pixel 
coordinates and the robot workspace coordinates, it was neces-
sary to find the transform between the two. Since the designated 
grasping area was placed on the same plane as the robot base, 
the process was simplified to the problem of finding an affine 
transformation between the image space and the base plane. In 
order to find the transformation, we measured a set of positions 
uniformly distributed in the camera field of view obtaining both the 

pixel coordinates [u, v] and the robot TCP [x, y, θ] coordinates. 
We then obtained the transformation matrix T using least square 
optimization (3): 

 

𝐓 = [

x1 y1 θ1

x2

⋮
y2

⋮
θ2

⋮
xn yn θn

] [

u1 v1 1
u2

⋮
v2

⋮
1
⋮

un vn 1

]

+

               (3) 

 

where: u1 and v1 are the image pixel coordinates, while x1, y1 
and θ1 are the robot TCP coordinates and n is the number of the 
calibration samples taken.  

The obtained transformation matrix 𝐓 was then used to find 
the robot TCP target coordinates as the function of the image 
coordinates (4). 

 

[

x
y
θ

] = 𝐓 [
u
v
1

]            (4) 

 
In our experiment, we used 24 calibration samples and ob-

tained the 0.92 [mm] RMSE value for the coordinate transform 
between the image and the robot frame coordinates. 

3.3. Optimal Template Scaling 

The next step of our experiment was to find the optimal tem-
plate scales for the three selected objects. For each of the ob-
jects, a set of scaled templates was generated and tested against 
the baseline camera image. For each of these scales, the correla-
tion coefficient was computed and the optimal scaling factor was 
found. The relationship between the template scale and the 
matching score for the analysed objects is presented in Fig. 7. 

a) 

 
b) 

 
c)  

 
Fig. 7. The correlation coefficient as the function of template scale for 
            three considered objects: a) Object 1 – crank;  

     b) Object 2 – bracket; c) Object 3 – spacer 

The following template sizes were chosen based on these re-
sults: 2.22; 3.40; 2,83 for object 1 (crank) 20 x 34 [px] template, 
2 (bracket) 30 x 39 [px] template and 3 (spacer) 30 x 36 [px] 
template respectively. 

The processing time for the object recognition also depends 
on the selected template resolution. The average recognition time 
for different template resolutions are shown in Fig. 8. In this work, 
we select the template scale based on the matching score, but it 
is conceivable to introduce a trade-off when faster on-line pro-
cessing is required. 
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Fig. 8. Average single object recognition time  
           as the function of template resolution  

3.4. Manipulator control 

In order to perform pick-and-place task, online-generated ma-
nipulator trajectory has been planned with the usage of recog-
nized objects CoGs, rotations angles and desired grasp poses. 
Robot control was realized through point-to-point motions’ imple-
mentation provided by the manufacturer. Pick-and-place actions 
were realized through linear movement in the Cartesian space, 
while simple joint-space point-to-point movements were used for 
the transfer of the pieces. The UR5 robot achieves +/- 0.1 [mm] 
repeatability according to the manufacturer. 

3.5. Pick-and-place task 

In the grasping task, the system was used to recognize and 
estimate the pose of 6 objects (2 of each kind) placed in the des-
ignated picking area as shown in Fig. 3. The camera image was 
captured and upon processing, the objects were grasped and 
placed in the target area. This action was repeated 50 times, and 
thus, 300 recognitions were performed (6 objects viewed 50 
times). In this experiment, each object was expected to be recog-
nized 100 times. During the experiment, we analysed whether the 
objects were correctly recognized and if they were placed in the 
proper target areas. The data collected during this experiment is 
presented in the Tab. 1 below. 

Tab. 1. The confusion matrix of the cumulated experimental results 

 Recognized as: 

 Object 1 Object 2 Object 3 Not recog-
nized 

Object 1 100 0 0 0 

Object 2 0 100 0 0 

Object 3 0 0 98 2 

99.33% was achieved, where only the third type of object (the 
spacer) was not recognized in two cases. The results gathered in 
the confusion matrix suggest that the proposed method performs 
well. We have additionally recorded the vision processing time in 
order to track the system performance. We have achieved 0.21 [s] 
average recognition time per scene. 

4. CONCLUSIONS 

In this paper, we have presented a new implementation of the 
template matching algorithm applied to the solving of an industrial 
based pick-and-place task, where the grasped objects are charac-
terized by few visual features. This property of the objects often 
makes the task impossible to solve using sophisticated vision 
algorithms, which rely on multiple and distinct features. We have 
proposed and described a two part system, in which an offline 
template scale optimization is introduced in order to improve the 
online vision system performance. The introduced system allows 
the user to present the object templates and define the grasping 
pose using an intuitive GUI.  

We have tested the proposed method in a real-world setting 
using a robotic setup equipped with an UR5 manipulator. Three 
object shapes were selected for the experiment in order to test the 
ability of the system to distinguish distinct geometric shapes. The 
experiment provided the information on the success rate of the 
object recognition, the rate of successful grasping and the 
achieved processing time. A 99.33% success rate was achieved 
by the system, where only one kind of an object was not recog-
nized twice in 100 samples. The average processing time 
achieved was 0.21 [s] per scene, which is sufficient for an online 
implementation. The results obtained in the experiment support 
the feasibility of our proposed approach. Still, the system setup 
requires some cost in terms of the need for calibration. The future 
work should be focused on reducing the setup time required, such 
as performing automatic camera-to-robot calibration. 
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