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Abstract. In the actuarial literature, many authors have studied estimation of the reinsurance
premium for heavy tailed i.i.d. sequences, especially for the Proportional Hazard (PH) due to
Wang. The main aim of this paper is to extend this estimation for heavy tailed dependent
sequences satisfying some mixing dependence structure. In this study we prove that the new
estimator is asymptotically normal. The behavior of the estimator is examined using simulation
for MA(1) process.
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1. INTRODUCTION

Let x denote the set of nonnegative random variables on the probability space (2, A, P).
In this study, we use the following distortion risk measure

M, :x — RT,

X — My(X) = / o(Sx (x))d,
0

where Sx(x) =1 — Fx(x) is the survival function of X and g is a concave increasing
function such that g(0) = 0, g(1) = 1. One remarks that this distortion measure is
sub-additive. It was introduced by Denneberg [6] and Wang [19]. It verifies also axioms
of coherent risk measure proposed by Artzner et al. [1]. In the field of insurance the risk
measure M, is called the risk premium.

A standard product of reinsurance is excess-of-loss reinsurance, which means the
reinsurer only offset the loss of cedent exceeding a certain amount of retention R > 0.
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By purchasing excess-of-loss reinsurance, the cedants limit their risk at a certain level.
The premium of excess-of-loss reinsurance follows as:

My r(X) = [ g(Sx())dz.
/

If g(x) = 27, p > 1 (called the distortion parameter), we obtain the PH-premium
of excess-of-loss reinsurance (Wang [19])

o0

Tor(X) = /(Sx(x))l/pdx. (1.1)

R

The parameter p is called also the risk-aversion index. It controls the amount of risk
loading in the premium.

The heavy-tailed nature of insurance claims requires that special attention be put
into the analysis of the tail of a loss distribution. The reinsurance companies need to
calculate the premium 7, g for covering such excess claims, which is usually very large.
Extreme value theory has become one of the main theories in developing statistical
models for extreme insurance losses. Many authors have studied estimation of the rein-
surance premium when sequences are i.i.d. for different distributions, particularly for
heavy tailed ones (see Vandewalle and Beirlant [18] and Necir et al. [13], Rassoul [16]).
It is interesting to extend this estimation for dependent sequences with heavy tailed
marginals since in economics real data sets are most often dependent.

The rest of this paper is organized as follows. In Section 2, we discus about the
behavior of the tail empirical process under dependence. In Section 3, we construct
a reinsurance premium estimation for positive stationary [g-mixing sequence with
heavy-tailed marginals which is the main result. In Section 4, we compute confidence
bounds for 7, r by some simulations. Section 5 is devoted to the proofs.

2. TAIL EMPIRICAL PROCESS UNDER DEPENDENCE

Let {X;} a stationary sequence with common distribution function F of an insured
risk X > 0 satisfy the following condition of S-mixing dependence structure

B(l):=sup E| sup [P(A[B") — P(A)] | =0,
meN AEB:’:+Z+1

as | — oo, where Bi* and By?, ., denote the o-fields generated by (X;)i<i<m and
(Xi)m+i+1<i, respectively.

We assume that Sx(z) = 1 — Fx(z) has regular variation function near infinity
with index —a, that is,

lim LX (Ux)

Jm S =g~ forany 2 >0 and 1<a<2. (2.1)
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(see, e.g., de Haan and Ferreria [9]). Such d.f. constitute a major subclass of the family
of heavy-tailed distributions. It includes distributions such those Pareto’s, Burr’s,
Student’s and log-gamma, which are known to be appropriate models of fitting large
insurance claims, large fluctuations of prices, log-returns, and so on (see Beirlant
et al. [2], Reiss and Thomas [17] for more details). A high quantile z,, situated in the
border or even beyond the range of the available data is denoted

xp::Q(l—p):F_l(l—p),p:pn—>0, as n — 00, np, — w >0,

where Q(s) = inf{x € R: F(z) > s, 0 < s < 1} is the quantile function associated to
the d.f. F. Note that the condition (2.1) is equivalent to

U(tx)

tggo 0 = z'/®, for any z > 0, (2.2)

where U(t) = Q(1 —1/t),t > 1.

To get asymptotic normality of estimators of parameters of extreme events, it is
necessary to quantify the speed of convergence in (2.2), then is usual to assume
the following extra second regular variation condition, that involves a second order
parameter 1 < 0:

Ut m—1
tli)r(r)lo(A(t))_l ( U((f)) - xl/o‘> = gl/el m_— for any x > 0, (2.3)
where A is a suitably chosen function of constant sign near infinity. The most popular
estimator of «, is the Hill estimator [11], with the form

i -1
N 1
a= (k: Z log X,,—i n, — log XnkH,n) ) (24)

i=1

where X, < Xo, < ... < X, ,, are the order statistics and £ = k,, is an intermediate
sequence such that
k— oo, k/n—0, n— oco. (2.5)

For the high quantile estimation, we recall the classical semi-parametric Weissman-type
estimator of =, (Weissman [20])

R np\—1/@
xp::X%_hn(jy) . (2.6)

Drees [8] established, for stationary S-mixing time series, the asymptotic behavior
of the tail empirical quantile function (q.f.), Qn(t) := X, _x,¢,n Where k, = k
is an intermediate sequence. This result is reached considering a weighted approximation
for @, (t) and the following conditions:

(C1) Assumed that there exists a sequence l,,, n € N, such that
In
lim Blln)

n—oo [,

n+ k7 ?1og? k = 0.
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(C2) A regularity condition for the joint tail of (X7, X14.m):

T—r 00

k k
em(2,y) = lim %P [Xl > Fyt (1 - nx) Xigm > Fy! (1 - ny)] :

foralmeN, 2 >0, y<1+e, € >0and F~! denoting the inverse function
of F.

(C3) A uniform bound on the probability that both X7 and X7 4, belong to an extreme
interval:

RP (X1 € L(e0) X € Lo < (0 -2) (#m) + i),

forallm e N, 0 < z, y < 1+¢, where D; > 0 is a constant, p(m), is a sequence
satisfying > >°_, p(m) < oo and I,(x,y) =]F (1 — yk/n), F~ (1 — zk/n)].
(C4) The q.f. admits the following representation:

F7U1—)=dt™ (1 (1)),

with |r(t)] < ®(t), for some constant d > 0 and a function ® which is 7-varying
at 0 for 7 > 0, or 7 = 0 and ® is non decreasing with lim; o ®(¢) = 0.
(C5) A limiting behavior for k

lim +/(k)®(k/n) — 0.

n—oo

Under the conditions (C1)-(C5) with I,,k/n — 0 as n — oo, Drees [8] proved that
there exist versions of the tail empirical q.f. @),, and a centered Gaussian process e
with covariance function ¢ given by

cl@y) =z Ay+ Y [em(z,y) + em(y,2)], (2.7)

m=1

such that

sup tY/oF/2(1 4 |logt])~1/?
t€(0,1]

nt -1/« —1,— a
k1/2 <F_1(Q1£)k/n) ¢ 1/ >_a 14 (1/ +1)e(t)

P
— 0,

with = stands for convergence in probability.

Drees [8] observe that almost every estimator & of the tail index parameter « that
are based only on the k, + 1 largest order statistics, can be represented as a smooth
functional T (verifying some regularity conditions) applied to the tail empirical q.f..
Hill estimator [11], Pickands estimator (Pickands [15]) and the moment estimator
proposed by Dekkers et al. [5] are some examples. Drees [7] established the asymptotic
normality of these estimators.
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More precisely,

VE(@—a) BN (0,02.,), (2.8)

D e
where — stands for convergence in distribution and

070 = / (st) "D (s, t)wr o (ds)vr o (dE), (2.9)
(0,1] (0,1]

with ¢ is the function defined in (2.7) and vp, is a signed measure. For the Hill
estimator (2.4) it can be proved that, it has signed measure given by

Vi .o (dt) =t dt — 6, (dt), (2.10)

with §; the Dirac measure with mass 1 at 1.

3. DEFINING THE ESTIMATOR AND MAIN RESULTS

To estimate the risk measure 7, r(X), given in (1.1), when X is a positive stationary
[-mixing process. Notice that for a suitable economic interest, the threshold R must
be so large and depends on the sample size n of claims income. For this reason we will
suppose that R = Q(1 — k/n), where k = k,, is a sequence of integers defining in (2.5).
This leads to rewrite 7, r(X) into

7 m(X) = / (Sx (2))/*dz. (3.1)
Q(1—k/n)

We present now our risk measure 7, g(X) as

k/n

Tpr(X) = — / sYPdQ(1 — s). (3.2)

0

We derive the estimator for Q(1 — s) in (2.6), and after an integration, we obtain the
following estimator for 7, r(X)

~ k/n)t/r
ﬂ-PyR(X) = p(a/_)an—k,n- (33)

The asymptotic normality of 7, r(X) is established in the following theorem.

Theorem 3.1. Suppose that X; is a positive stationary B-mizring sequence with con-
tinuous common marginal distribution function F satisfying the conditions (C1)—(C5).
Assume that (2.3) holds with t=*/PQ(1 —1/t) — 0 as t — oo, and k = k,, be such that
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k— oo, k/n — 0, l,k/n — 0 and \/nA(n/k) — 0 as n — oco. Then, for 1 < p < a,
we have

~1/p1.1/2
(k/n)—pk[ﬁpﬂ(X) — 7, r(X)] L, N(0,0%), asn — oo,

Xon—kn
where
1
o2 = (b—a)2e(1,1) + 2ab/t—1c(1,t)dt, (3.4)
0
with a = ﬁ and b= a(a"_p).

4. SIMULATION STUDY

Several approaches to the automated determination of an optimal sample fraction k
for the Hill estimator have been studied (see e.g. Cheng and Peng [4], Neves and Fraga
Alves [14]). Recently Caeiro and Gomes [3] proposed an algorithm essentially based
on sample path stability (PS), using this algorithm we calculate k., an optimal value
of k. The optimal premium can therefore be estimated by

p (kom/n)l/p
a—p

Tp(X) = Xon—kope.n- (4.1)

4.1. MOVING AVERAGE MODEL

Consider now the stationary solution of the MA(1) equation
X, =AZi1+ 2, 1<t <n, (4.2)
where 0 < A < 1 and {Z;} i.i.d. innovations such that
Fz(z) =1 =271y, 1<a<2.
Drees [8] shows that conditions C1-C5 hold for the MA(1) in (4.2) with
I, = [Clogn], (4.3)

for a sufficiently large constant C' > 0 (here [z] denotes the largest integer smaller
than or equal to z) and k,, satisfying.

log? nlog? (logn) = o(ky). (4.4)

We have that 1 — Fx(x) ~ (1 4+ A*)(1 — Fz(x)) as & — oo and from de Haan et al.
[10], the covariance function c is given by

c(@y) =x Ay+ 1+ A"z AyA* +y A zA®).
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Then we have

143X
14 A

g2 _ P 2ot + p?a? — 2ap3 + p? N 2p?
= a?(a—p)! (a—p)?

To illustrate the performance of our estimator, we fix the distortion parameter
p=1.1and p=1.2, then we generate 100 replications of the time series (Xi,...,X,)
for different sample sizes (1000, 2000), where X is an MA(1) process satisfying (4.2),
where A = 0.4, and we use two tail indices o = 1.6 and o = 1.7. The simulation results
are presented in the Table 1, where Ib and ub stand respectively for lower bound and
upper bound of the confidence interval, we calculate also the absolute bias (abias)

—aA¥In A\
1+ )\

and the root mean squared error (RMSE). We remark what follows.

1. The premium increases with p, since as log [Sx (x)] < 0, we have

dﬂp,

1
o

/ )17 log [Sx (z)]dz > 0,
R

justifying the risk-aversion index interpretation of p.

2. The abias and RMSE of our estimator decrease when the sample size increases,

which indicates that the estimator is consistent.

3. For the same p and different values of a the premium increase when a decrease,

this is caused by the tail of the distribution that becomes heavier.

Table 1. 95% confidence intervals for the premium

o 1.6 1.7
p 11 ] 12 11 ] 1.2
n = 1000
™ 2.24808 | 3.132809 [ 1.807002 | 2.422459
T 2.303153 | 3.028236 | 1.879957 | 2.375734
abias | 0.05507251 | 0.104573 | 0.07295575 | 0.04672427
RMSE | 0.1301033 | 0.1525836 | 0.1192907 | 0.1191978
Ib 1.330498 [ 1.331333 | 1.179637 1.25169
ub 3.275807 | 4.725138 | 2.580277 [ 3.499779
length | 1.945309 [ 3.393805 | 1.40064 2.248089
n = 2000
™ 2.207413 | 3.123468 [ 1.745688 2.38437
T 2.245965 | 3.044279 | 1.777907 [ 2.346778
abias | 0.03855116 | 0.0791887 | 0.03221853 | 0.03759216
RMSE | 0.1221333 | 0.1253208 | 0.1084543 | 0.1006299
1b 1.546671 | 1.844361 | 1.273527 | 1.541767
ub 2.945258 | 4.244197 | 2.282286 | 3.151788
length | 1.398587 | 2.399837 | 1.008759 | 1.610021
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5. PROOFS

5.1. PROOF OF THEOREM 3.1

Denoting
Hi=p (k/n)l/anfkm {alp - Ozlp}’
H, =" (k/n)l/pQ(l —k/n) Xn—kn 1
2= a—p QU —k/m) ' J
=" (k/n)l(;p?(l —k/n) (Sx (2))/7dz.
P Q(l1—k/n)

Then, we can easily verify that
Tp.r(X) — 7mp r(X) = Hy + Hy + Hj.

H; can be written also

& 1/p i
H - pac (k/n)P Xy _kn {1 1 }

G-pla—p) |a a

Since @ is a consistent estimator for « (see Hsing [12]), then for all large n

Hy = (14 op(1)" (k/m)"*Q(1 — k/n) {1 - 1}

(a —p)? & o

and (k/n)/*Q(1 — k/n) X

B . p n)YPO(1 = k/n n—kmn

Hy = (1+0p(1)) a—p {Q(l—k/n) 1}7
and
n)/r —k/n r
fﬁ:pu#)a?g Zop (Sx (x))/*da.
QQA—k/n)

Dress [8] has been shown that for all large n

Vi (1 _ 1) — a1 / t= VD e(tYup o (dt) + op(1),

(0,1]

and

where ¢(1) is a centered Gaussian process with covariance function ¢ defined in (2.7).
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This implies that for all large n

H1:(1+0p(1))pa2(k/n)1/pQ(l_k/n) a_l/t_(1+1/a)6(t)VT,a(dt)+0P(1) ,

VE(a —p)? A
Hy = (1+ 0p(1))p(k/”%(pf(_1p) ) (amTe(1) + op(1)).
Hence

(k/(’z)_lli;\)r(ﬂ’l + Hy) = N(0,07),
where

02 =b%c(1,1) 4+ 2ab [ t~ VN e(1,t)wp o (dt)

(0.1 (5.1)
+a? / / (st) YD (s, g o (dt) vr o (ds),
(0,1] (0,1]
Wltha—ﬁ andb—m

For H3 we have

(k/n)"oVE ey (PR,
Qi o R (G e ) ortd

where 7, p = fU (n/hy (S(@ N)YPdz. Since 2~ 1/PU(z) — 0 as & — oo, then an integration
by parts with a change of variables yields

T = n)/e 1003:7171/” nx —U(n .
o = (k/n) [p / Una/k) — U /k)]

Therefore

+op(1)

U)oy el e LTy, Uk
Q(1 —k/n) Hg‘*/g[a—p p/ U(nfk)

:_,f/ = l/p{ nnx//kk)) l/a} dz +op(1).
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From Theorem 2.3.9 of de Haan and Ferreira [9], for 1 < a« < 2 and 1/a < 1/p,
we obtain the limit as n — oo

(k/n)~ Yo\ _ 1 i pl/a=1/p— 127 —1 ” o o
Q1 —k/n) QU —kjm) 87 p\/EA 1/ P (1+0(1)) +op(1)

n a?p
VEA (7)) G0 anp—ay Lo +or(),

and since VkA (%) — 0 as n — oo we get

k/n)~1/r
(k/n) \FH3—>0, as n — oo.
QUL —k/n)
Replacing the signed measure (2.10) in the asymptotic variance (5.1), then
1 11
o? =b%c(1,1) + 2ab /t_l (1,t)dt — ¢(1,1) //st c(s,t)ds dt
0 00

1
-2 / s7te(s, 1)ds + ¢(1,1)
0

1
=b%c(1,1) + 2ab /t‘lc(l,t)dt—c(l,l) +a?c(1,1)
0

= (b—a)’c(1,1) + 2ab/t’1c(1, t)dt.
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