PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental evaluation of a novel concept of an implant for direct skeletal attachment of limb prosthesis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to experimentally evaluate a proposed two-part implantation system (medullary part made of PEEK composite and percutaneous part made of Ti6Al4V) for bone-anchored prosthesis and to compare it to typical press-fit design (also made of Ti6Al4V) used for the same purpose. Methods: Simplified prototypes of both implants were prepared for the research. Both implants were evaluated in vitro with the use of porcine femur (6 bones for each implant). ARAMIS vision system was used to measure strains in selected area of bone shaft, generated when putting an axial load on the implants to simulate static load bearing exercises performed during rehabilitation activities in primary stabilisation. Results: Obtained maps revealed high concentrations of strains, located near to distal part of the implant, during using a typical press-fit design with relatively low strain around the implant’s shaft. In the case of proposed design, noticeable strains occurred in the entire examined area of bone, with stronger concentration towards the proximal direction. Conclusions: Presented experimental results suggest that proposed design provides more appropriate implant-bone load transfer than typically used press-fit design. This may result in obtaining more beneficial mechanobiological stimulus which enables the researchers to achieve appropriate primary stability and maintain appropriate bone quality during its long-term use after achieving full osseointegration.
Słowa kluczowe
EN
strain   bone   implant   ARAMIS  
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok, Poland
Bibliografia
  • [1] ALI S., ABU OSMAN N.A., ESHRAGHI A., GHOLIZADEH H., ABD RAZAK N.A., WAN ABAS W.A., Interface pressure in transtibial socket during ascent and descent on stairs and its effect on patient satisfaction, Clin. Biomech., 2013, 28 (9–10), 994–999.
  • [2] BERAHMANI S., JANSSEN D., VAN KESSEL S., WOLFSON D., DE WAAL MALEFIJT M., BUMA P., VERDONSCHOT N., An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants, J. Mech. Behav. Biomed., 2015, 42, 177–185.
  • [3] BISHOP N.E., HÖHN J.C., ROTHSTOCK S., DAMM N.B., MORLOCK M.M., The influence of bone damage on press-fit mechanics, J. Biomech., 2014, 47 (6), 1472–1478.
  • [4] BRÅNEMARK R., BERLIN O., HAGBERG K., BERGH P., GUNTERBERG B., RYDEVIK B., A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients, Bone Joint J., 2014, 96–B (1), 106–113.
  • [5] BRUNSKI J.B., Avoid pitfalls of overloading and micromotion of intraosseous implants, Dent. Implantol. Update, 1993, (10), 77–81.
  • [6] CLEMENTE F., HÅKANSSON B., CIPRIANI C., WESSBERG J., KULBACKA-ORTIZ K., BRÅNEMARK R., JANSSON K.J.F., ORTIZ-CATALAN M., Touch and Hearing Mediate Osseoperception, Sci. Rep-UK., 2017, 7, 45363.
  • [7] DAMM N.B., MORLOCK M.M., BISHOP N.E., Friction coefficient and effective interference at the implant-bone interface, J. Biomech., 2015, 48 (12), 3517–3521.
  • [8] DICKINSON A.S., STEER J.W., WORSLEY P.R., Finite element analysis of the amputated lower limb: A systematic review and recommendations, Med. Eng. Phys., 2017, 43, 1–18.
  • [9] DRYGAS K.A., TAYLOR R., SIDEBOTHAM C.G., HUGATE R.R., MCALEXANDER H., Transcutaneous tibial implants: a surgical procedure for restoring ambulation after amputation of the distal aspect of the tibia in a dog, Vet. Surg., 2008, 37 (4), 322–327.
  • [10] FROSSARD L., GOW D.L., HAGBERG K., CAIRNS N., CONTOYANNIS B., GRAY S., BRÅNEMARK R., PEARCY M., Apparatus for monitoring load bearing rehabilitation exercises of a transfemoral amputee fitted with an osseointegrated fixation: a proof-of-concept study, Gait Posture, 2010, 32 (2), 223–228.
  • [11] FROSSARD L., TRANBERG R., HAGGSTROM E., PEARCY M., BRÅNEMARK R., Load on osseointegrated fixation of a transfemoral amputee during a fall: loading, descent, impact and recovery analysis, Prosthet. Orthot. Int., 2010, 34 (1), 85–97.
  • [12] GAO S.S., ZHANG Y.R., ZHU Z.L., YU H.Y., Micromotions and combined damages at the dental implant/bone interface, Int. J. Oral. Sci., 2012, 4 (4), 182–188.
  • [13] JETTÉ B., BRAILOVSKI V., SIMONEAU C., DUMAS M., TERRIAULT P., Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem, J. Mech. Behav. Biomed., 2018, 77, 539–550.
  • [14] JEYAPALINA S., BECK J.P., BACHUS K.N., CHALAYON O., BLOEBAUM R.D., Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model, Clin. Orthop. Relat. R., 2014, 472 (10), 2966–2977.
  • [15] KLUTE G.K., GLAISTER B.C., BERGE J.S., Prosthetic liners for lower limb amputees: a review of the literature, Prosthet. Orthot. Int., 2010, 34 (2), 146–153.
  • [16] LENG H., REYES M.J., DONG N.X., WANG X., Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone, Bone, 2013, 55 (2), 288–291.
  • [17] LENNERÅS M., TSIKANDYLAKIS G., TROBOS M., OMAR O., VAZIRISANI F., PALMQUIST A., BERLIN Ö., BRÅNEMARK R., THOMSEN P., The clinical, radiological, microbiological, and molecular profile of the skin-penetration site of transfemoral amputees treated with bone-anchored prostheses, J. Biomed. Mater. Res. A, 2017, 105 (2), 578–589.
  • [18] LYON C.C., KULKARNI J., ZIMERSON E., VAN ROSS E., BECK M.H., Skin disorders in amputees, J. Am. Acad. Dermatol., 2000, 42 (3), 501–507.
  • [19] MARTÍNEZ G., AZNAR J.M.G., DOBLARÉ M., CERROLAZA M., External bone remodeling through boundary elements and damage mechanics, Math. Comput. Simulat., 2006, 73 (1), 183–199.
  • [20] MAZURKIEWICZ A., The effect of trabecular bone storage method on its elastic properties, Acta Bioeng. Biomech., 2018, 20 (1), 21–27.
  • [21] MERCURI E.G., DANIEL A.L., HECKE M.B., CARVALHO L., Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling, Med. Eng. Phys., 2016, 38 (9), 904–910.
  • [22] PARKER L.M., What’s wrong with the dead body? Use of the human cadaver in medical education, Med. J. Australia, 2002, 176 (2), 74–76.
  • [23] PATERNÒ L., IBRAHIMI M., GRUPPIONI E., MENCIASSI A., RICOTTI L., Sockets for limb prostheses: a review of existing technologies and open challenges, IEEE T. Bio-Med. Eng., 2018, 65 (9), 1996–2010.
  • [24] PROCHOR P., Finite element analysis of stresses generated in cortical bone during implantation of a novel Limb Prosthesis Osseointegrated Fixation System, Biocybern. Biomed. Eng., 2017, 32 (2), 255–262.
  • [25] PROCHOR P., MIERZEJEWSKA Ż.A., Bioactivity of PEEK GRF30 and Ti6Al4V SLM in Simulated Body Fluid and Hank’s Balanced Salt Solution, Materials, 2021, 14, 2059.
  • [26] PROCHOR P., MIERZEJEWSKA Ż.A., Influence of the Surface Roughness of PEEK GRF30 and Ti6Al4V SLM on the Viability of Primary Human Osteoblasts Determined by the MTT Test, Materials, 2019, 12, 4189.
  • [27] PROCHOR P., PISZCZATOWSKI S., SAJEWICZ E., Biomechanical evaluation of a novel Limb Prosthesis Osteointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions, Acta Bioeng. Biomech., 2016, 18 (4), 21–31.
  • [28] PROCHOR P., SAJEWICZ E., A comparative analysis of internal bone remodelling concepts in a novel implant for direct skeletal attachment of limb prosthesis evaluation – a finite element analysis, P. I. Mech. Eng. H., 2018, 232 (3), 289–298.
  • [29] PROCHOR P., SAJEWICZ E., The influence of geometry of implants for direct skeletal attachment of limb prosthesis on rehabilitation program and stress-shielding intensity, Biomed. Res. Int., 2019, 6067952.
  • [30] PROCHOR P., SAJEWICZ E., Two-part implant for direct connection of bone with the limb prosthesis, patent no. 229715.
  • [31] SCHWARZE M., HURSCHLER C., SEEHAUS F., CORREA T., WELKE B., Influence of transfemoral amputation length on resulting loads at the osseointegrated prosthesis fixation during walking and falling, Clin. Biomech., 2014, 29 (3), 272–276.
  • [32] THESLEFF A., BRÅNEMARK R., HÅKANSSON B., ORTIZ--CATALAN M., Biomechanical Characterisation of Bone-anchored Implant Systems for Amputation Limb Prostheses: A Systematic Review, Ann. Biomed. Eng., 2018, 46 (3), 377–391.
  • [33] TOMASZEWSKI P.K., LASNIER B., HANNINK G., VERKERKE G.J., VERDONSCHOT N., Experimental assessment of a new direct fixation implant for artificial limbs, J. Mech. Behav. Biomed., 2013, 21, 77–85.
  • [34] VERTRIEST S., COOREVITS P., HAGBERG K., BRÅNEMARK R., HÄGGSTRÖM E., VANDERSTRAETEN G., FROSSARD L., Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: Loading compliance, Prosthet. Orthot. Int., 2017, 41 (4), 393–401.
  • [35] WIK T.S., FOSS O.A., HAVIK S., PERSEN L., AAMODT A., WITSØ E., Periprosthetic fracture caused by stress shielding after implantation of a femoral condyle endoprosthesis in a transfemoral amputee – a case report, Acta Orthop., 2010, 81 (6), 765–767.
  • [36] XU D.H., CROCOMBE A.D., XU W., Numerical evaluation of bone remodelling associated with trans-femoral osseointegration implant – A 68 month follow-up study, J. Biomech., 2016, 49 (3), 488–492.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-846dc59d-c39d-4aea-bf31-1baeeab68678
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.