PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation and risk factors of volume and dose differences of selected structures in patients with head and neck cancer treated on Helical TomoTherapy by using Deformable Image Registration tool

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The aim of this study was the evaluation of volume and dose differences in selected structures in patients with head and neck cancer during treatment on Helical TomoTherapy (HT) using a commercially available deformable image registration (DIR) tool. We attempted to identify anatomical and clinical predictive factors for significant volume changes probability. Material and methods: According to our institutional protocol, we retrospectively evaluated the group of 20 H&N cancer patients treated with HT who received Adaptive Radiotherapy (ART) due to soft tissue alterations spotted on daily MVCT. We compared volumes on initial computed tomography (iCT) and replanning computed tomography (rCT) for clinical target volumes (CTV) – CTV1 (the primary tumor) and CTV2 (metastatic lymph nodes), parotid glands (PG) and body contour (B-body). To estimate the planned and delivered dose discrepancy, the dose from the original plan was registered and deformed to create a simulation of dose distribution on rCT (DIR-rCT). Results: The decision to replan was made at the 4th week of RT (N = 6; 30%). The average volume reduction in parotid right PG[R] and left PG[L] was 4.37 cc (18.9%) (p < 0.001) and 3.77 cc (16.8%) (p = 0.004), respectively. In N = 13/20 cases, the delivered dose was greater than the planned dose for PG[R] of mean 3 Gy (p < 0.001), and in N = 6/20 patients for PG[L] the mean of 3.6 Gy (p = 0.031). Multivariate regression analysis showed a very strong predictor explaining 88% (R2 = 0.88) and 83% (R2 = 0.83) of the variance based on the mean dose of iPG[R] and iPG[L] (p < 0.001), respectively. No statistically significant correlation between volume changes and risk factors was found. Conclusions: Dosimetric changes to the target demonstrated the validity of replanning. A DIR tool can be successfully used for dose deformation and ART qualification, significantly reducing the workload of radiotherapy centers. In addition, the mean dose for PG was a significant predictor that may indicate the need for a replan.
Rocznik
Strony
60--68
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Radiotherapy Department II, Greater Poland Cancer Center, Poland
  • Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
  • Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
  • Department of Medical Physics, Greater Poland Cancer Center, Poland
autor
  • Radiotherapy Ward I and Department I, Greater Poland Cancer Center, Poland
  • Institute of Psychology, Pedagogical University in Krakow, Poland
autor
  • Department of Medical Physics, Greater Poland Cancer Center, Poland
  • Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
Bibliografia
  • 1. Bak B, Skrobala A, Adamska A, Malicki J. What information can we gain from performing adaptive radiotherapy of head and neck cancer patients from the past 10 years? Cancer Radiother. 2021; 9:1278-3218(21). https://doi.org/10.1016/j.canrad.2021.08.019
  • 2. Hansen EK, Bucci MK, Quivey JM , Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. IJROBP. 2006;64(2):355-362. https://doi.org/10.1016/j.ijrobp.2005.07.957
  • 3. Lee H, Ahn YC, Oh D, Nam H, Kim YI, Park SY. Tumor volume reduction rate measured during adaptive definitive radiation therapy as a potential prognosticator of locoregional control in patients with oropharyngeal cancer. Head Neck. 2014;36(4):499-504. https://doi.org/10.1002/hed.23328
  • 4. McCulloch MM, Lee C, Rosen BS, Kamp JD, et al. Predictive Models to Determine Clinically Relevant Deviations in Delivered Dose for Head and Neck Cancer. Pract Radiat Oncol. 2019;9(4): e422-e431. https://doi.org/v10.1016/j.prro.2019.02.014
  • 5. Fiorentino A, Caivano R, Metallo V, et al. Parotid gland volumetric changes during intensity-modulated radiotherapy in head and neck cancer. BJR. 2012;85:1415–1419 https://doi.org/10.1259/bjr/30678306
  • 6. Fung WWK, Wu VWC, Teo PML. Developing an adaptive radiation therapy strategy for nasopharyngeal carcinoma. Journal of Radiation Research. 2014:55(2):293-304. https://doi.org/10.1093/jrr/rrt103
  • 7. Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, et al. Deformable image registration for radiation therapy: principle, methods, applications, and evaluation. Acta Oncol. 2019:58:1225-1237. https://doi.org/10.1080/0284186X.2019.1620331
  • 8. Bak B, Skrobala A, Adamska A, Kazmierska J, Jozefacka N, Piotrowski T, Malicki J. Criteria for verification and replanning during adaptive radiotherapy in head and neck cancer. Life. 2022; in press
  • 9. Brouwer CL, Steenbakkers RJ, Bourhis J, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83-90. https://doi.org/10.1016/j.radonc.2015.07.041
  • 10. Wei-Rong Y, Shou-Ping X, Bo L, et al. Replanning Criteria and Timing Definition for Parotid Protection-Based Adaptive Radiation Therapy in Nasopharyngeal Carcinoma. BioMed Research International. 2015;476383. https://doi.org/10.1155/2015/476383
  • 11. Brown E, Owen R, Harden F, Mengersen K, Oestreich K, et al. Head and neck adaptive radiotherapy: Predicting the time to replan. Asia Pac J Clin Oncol. 2016;4:460-467. https://doi.org/10.1111/ajco.12516
  • 12. Burela N, Soni TP, Patni N, Natarajan T. Adaptive intensity-modulated radiotherapy in head-and-neck cancer: A volumetric and dosimetric study. J Cancer Res Ther. 2019;15(3):533-538. https://doi.org/10.4103/jcrt.JCRT_594_17
  • 13. Bhandari V, Patel P, Gurjar OP, Gupta KL. Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers. J Med Phys. 2014;39:164-8. https://doi.org/10.4103/0971-6203.139005
  • 14. Dewan A, Sharma S, Dewan A, Srivastava H, Rawat S, Kakria A, et al. Impact of Adaptive Radiotherapy on Locally Advanced Head and Neck Cancer - A Dosimetric and Volumetric Study. Asian Pac J Cancer Prev. 2016;17(3):985-92. https://doi.org/10.7314/apjcp.2016.17.3.985
  • 15. Hunter KU, Fernandes LL, Vineberg KA, McShan D, Antonuk AE, et al. Parotid glands dose-effect relationships based on their actually delivered doses: implications for adaptive replanning in radiation therapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2013;15;87(4):676-82. https://doi.org/10.1016/j.ijrobp.2013.07.040
  • 16. Castelli J, Simon A, Louvel G, Henry O, Chajon E, Nassef M, et al. Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia. Radiat Oncol. 2015;9;10:6. https://doi.org/10.1186/s13014-014-0318-z
  • 17. Capelle L, Mackenzie M, Field C, Parliament M, Ghosh S, Scrimger R. Adaptive radiotherapy using helical tomotherapy for head and neck cancer in definitive and postoperative settings: initial results. Clin Oncol. 2012;24(3):208-15. https://doi.org/10.1016/j.clon.2011.11.005
  • 18. Zhang P, Simon A, Rigaud B, Castelli J, Ospina Arango JD, Nassef M, et al. Optimal adaptive IMRT strategy to spare the parotid glands in oropharyngeal cancer. Radiother Oncol. 2016;120(1):41-7. https://doi.org/10.1016/j.radonc.2016.05.028
  • 19. Bhide SA, Davies M, Burke K, McNair HA, Hansen V, Barbachano Y, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360-8. https://doi.org/10.1016/j.ijrobp.2009.04.005
  • 20. Ho KF, Marchant T, Moore C, Webster G, Rowbottom C, Penington H, et al. Monitoring dosimetric impact of weight loss with kilovoltage (kV) cone beam CT (CBCT) during parotid-sparing IMRT and concurrent chemotherapy. Int J Radiat Oncol Biol Phys. 2012;82(3):375-82. https://doi.org/10.1016/j.ijrobp.2011.07.004
  • 21. Jin X, Han C, Zhou Y, et al. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion. Radiat Oncol. 2013;8;277. https://doi.org/10.1186/1748-717X-8-277
  • 22. Hansen EK, Bucci MK, Quivey JM, Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355-62. https://doi.org/10.1016/j.ijrobp.2005.07.957
  • 23. Salama JK, Haddad RI, Kies MS, et al. Clinical practice guidance for radiotherapy planning after induction chemotherapy in locoregionally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;75(3):725-33. https://doi.org/10.1016/j.ijrobp.2008.11.059
  • 24. Chen A, Daly ME, Cui J, Mathai M, Benedict S, Purdy JA. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck. 2014;36(11):1541-6. https://doi.org/10.1002/hed.23477
  • 25. Zhao L, Wan Q, Zhou Y, Deng X, Xie C, Wu S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol. 2011;98:23-27. https://doi.org/10.1016/j.radonc.2010.10.009
  • 26. Kataria T, Gupta D, Goyal S, Bisht SS, Basu T, Abhishek A, et al. Clinical outcomes of adaptive radiotherapy in head and neck cancers. Br J Radiol. 2016;89(1062). https://doi.org/10.1259/bjr.20160085
  • 27. van Kranen S, Hamming-Vrieze O, Wolf A, Damen E, van Herk M, Sonke JJ. Head and Neck Margin Reduction With Adaptive Radiation Therapy: Robustness of Treatment Plans Against Anatomy Changes. Int J Radiat Oncol Biol Phys. 2016;1;96(3):653-60. https://doi.org/10.1016/j.ijrobp.2016.07.011
  • 28. Yan D, Yan S, Wang Q, et al. Predictors for replanning in loco-regionally advanced nasopharyngeal carcinoma patients undergoing intensity-modulated radiation therapy: a prospective observational study. BMC Cancer. 2013;13;548. https://doi.org/10.1186/1471-2407-13-548
  • 29. Height R, Khoo V, Lawford C, Cox J, Joon DL, Rolfo A, Wada M. The dosimetric consequences of anatomic changes in head and neck radiotherapy patients. Journal of Medical Imaging and Radiation Oncology. 2010;54(5);497-504. https://doi.org/10.1111/j.1754-9485.2010.02209.x
  • 30. Chen C, Fei Z, Chen L, Bai P, et al. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy? Medical Dosimetry. 2014;39(1):34-7. https://doi.org/10.1016/j.meddos.2013.09.002
  • 31. Wu Q, Chi Y, Chen PY, Krauss DJ, Yan D, Martinez A. Adaptive replanning strategies accounting for shrinkage in head and neck IMRT. Int J Radiat Oncol Biol Phys. 2009;75(3):924-32. https://doi.org/10.1016/j.ijrobp.2009.04.047
  • 32. Thomson DJ, Beasley WJ, Garcez K, Lee LW, Sykes AJ, Rowbottom CG, Slevin NJ. Relative plan robustness of step-and-shoot vs rotational intensity-modulated radiotherapy on repeat computed tomographic simulation for weight loss in head and neck cancer. Med Dosim. 2016;41(2):154-8. https://doi.org/10.1016/j.meddos.2016.01.001
  • 33. Wang W, Yang H, Hu W, Shan G, Ding W, Yu C, et al. Clinical study of the necessity of replanning before the 25th fraction during the course of intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2010;77:617-621. https://doi.org/10.1016/j.ijrobp.2009.08.036
  • 34. Belshaw L, Agnew CE, Irvine DM, et al. Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose. Radiat Oncol. 2019;14;189. https://doi.org/10.1186/s13014-019-1400-3
  • 35. Virendra B, Prapti P, Om Prakash G, et al. Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers. J Med Phys. 2014;39(3):164-168. https://doi.org/10.4103/0971-6203.139005
  • 36. Castelli J, Simon A, Rigaud B, Lafond C, Chajon E, Ospina JD, et al. A Nomogram to predict parotid gland overdose in head and neck IMRT. Radiat Oncol. 2016;8;11:79. https://doi.org/10.1186/s13014-016-0650-6
  • 37. Ren G, Xu SP, Du L, et al. Actual anatomical and dosimetric changes of parotid glands in nasopharyngeal carcinoma patients during intensity modulated radiation therapy. Biomed Res Int. 2015:670327. https://doi.org/10.1155/2015/670327
  • 38. Yao WR, Xu SP, Liu B, et al. Replanning Criteria and Timing Definition for Parotid Protection-Based Adaptive Radiation Therapy in Nasopharyngeal Carcinoma. Biomed Res Int. 2015:476383. https://doi.org/10.1155/2015/476383
  • 39. Pukala J, Johnson PB, Shah AP, Langen KM, Bova FJ, et al. Benchmarking of five commercial deformable image registration algorithms for head and neck patients. Journal of Applied Clinical Medical Physics. 2016;17(3);25-40. https://doi.org/10.1120/jacmp.v17i3.5735
  • 40. Kadoya N, Fujita Y, Katsuta Y, et al. Evaluation of various deformable image registration algorithms for thoracic images. J Radiat Res. 2014;55(1):175-182. https://doi.org/10.1093/jrr/rrt093
  • 41. Kubli A, Pukala J, Shah AP, et al. Variability in commercially available deformable image registration: A multi-institution analysis using virtual head and neck phantoms. J Appl Clin Med Phys. 2021;22(5):89-96. https://doi.org/10.1002/acm2.13242
  • 42. Schwartz DL, Garden AS, Thomas J, Chen Y, Zhang Y, Lewin J, et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int J Radiat Oncol Biol Phys. 2012;83:986-93. https://doi.org/10.1016/j.ijrobp.2011.08.017
  • 43. Han C, Chen YJ, Liu A, Schultheiss TE, Wong JYC. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. International Journal of Radiation Oncology Biology Physics. 2008;70;4;1256-1262. https://doi.org/10.1016/j.ijrobp.2007.10.067
  • 44. Brouwer CL, Steenbakkers RJ, van der Schaaf A, Sopacua CT, van Dijk LV, et al. Selection of head and neck cancer patients for adaptive radiotherapy to decrease xerostomia. Radiother Oncol. 2016;120(1):36-40. https://doi.org/10.1016/j.radonc.2016.05.025
  • 45. Beetz I, Schilstra C, van der Schaaf A, et al. NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: the role of dosimetric and clinical factors. Radiother Oncol. 2012;105:101-6. https://doi.org/10.1016/j.radonc.2012.03.004
  • 46. Deasy JO, Moiseenko V, Marks L, et al. Radiotherapy dose–volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 2010;76:S58-63. https://doi.org/10.1016/j.ijrobp.2009.06.090
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84693f73-45ff-45f3-b88e-6119f18e2e10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.