PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects exerted by average particle size and non uniformity on bed surface fractal properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sediment bed surfaces exist widely in natural rivers, and many aspects in river dynamics are closely relevant to bed surface roughness, such as flow structure, river resistance and sediment transport. As two important parameters for quantifying bed surface roughness, how average particle size and non-uniformity affect bed surface structure is unknown. Therefore, nine groups of sediment samples with different average particle sizes or different non-uniformities were firstly prepared by screening dry natural sediments. Then, the prepared sediment samples were used to manually pave nine groups of bed surfaces, and the high-precise bed surface digital elevations were obtained by a handheld 3D laser scanner. Finally, the effects exerted by the average particle size and non-uniformity on the bed surface fractal properties were discussed. The results showed that there is only a scale-free range in a profile or a two-dimensional specific direction of a bed surface with normal-distributed particle gradation. The averaged scale-free upper limit in the two-dimensional specific directions and that related to many profiles are less affected by the non-uniformity, but more affected by the average particle size. For the bed surfaces with the same non-uniformity, when the average particle size is smaller than 15 mm, the larger the average particle size is, the smaller the fractal dimension is, but the larger the scale coefficient is; when the average particle size is larger than 15 mm, the larger the average particle size is, the larger the fractal dimension and the scale coefficient are, while for the bed surfaces with the same average particle size, the non-uniformity has no significant effects on the fractal dimension and the scale coefficient. The averaged scale coefficient in the two-dimensional specific directions of an isotropic bed surface and that related to many profiles are approximately equal, but the averaged fractal dimension in the two-dimensional specific directions is obviously larger than that plus 1 related to many profiles.
Czasopismo
Rocznik
Strony
517--529
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
autor
  • State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
Bibliografia
  • 1. Ackers P, White W (1973) Sediment transport: new approach and analysis. J Hydraul Div 99(11):2041–2060
  • 2. Aubeneau AF, Martin RL, Bolster D, Schumer R, Jerolmack D, Packman A (2015) Fractal patterns in riverbed morphology produce fractal scaling of water storage times. Geophys Res Lett 42(13):5309–5315
  • 3. Andrle R, Abrahams AD (1989) Fractal techniques and the surface roughness of talus slopes. Earth Surf Proc Land 14(3):197–209
  • 4. Biham O, Malcai O, Lidar D, Avnir D (1998) Reply to the discussion of ‘Is the geometry of nature fractal?’ Science 279:785–786
  • 5. Burrough PA (1981) Fractal dimensions of landscapes and other environmental data. Nature 294:240–242
  • 6. Burrough PA (1983) The application of fractal concepts to nested levels of soil variation. J Soil Sci 34(3):577–597
  • 7. Butler JB, Lane SN, Chandler JH (2001) Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Math Geol 33(3):301–330
  • 8. Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci 12(5):713–722
  • 9. David A, Ofer B, Daniel L, Ofer M (1998) Applied mathematics: is the geometry of nature fractal? Science 279:39–40
  • 10. Foufoula-Georgiou E, Sapozhnikov VB (1998) Anisotropic scaling in braided rivers: an integrated theoretical framework and results from application to an experimental river. Water Resour Res 34(4):863–867
  • 11. Goodchild MF (1980) Fractals and the accuracy of geographical measures. Math Geol 12:85–98
  • 12. Huang GH, Wang CK (2012) Multiscale geostatistical estimation of gravel-bed roughness from terrestrial and airborne laser scanning. Geoence and Remote Sensing Letters 9(6):1084–1088
  • 13. Hammond FDC, Heathershaw AD, Langhorne DN (2006) A comparison between shields threshold and the movement of loosely packed gravel in a tidal channel. Sedimentology 31(1):51–62
  • 14. Kamphuis JW (1974) Determination of sand roughness for fixed beds. J Hydraul Res 12(2):193–203
  • 15. Klinkenberg B, Goodchild MF (1992) The fractal properties of topography: a comparison of methods. Earth Surf Proc Land 17(3):217–234
  • 16. Luo M, Wang X, Yan X, Huang E (2020) Applying the mixing layer analogy for flow resistance evaluation in gravel-bed streams. J Hydrol 589:125119
  • 17. Malinverno A (1989) Testing linear models of sea-floor topography. Pure Appl Geophys 131:139–155
  • 18. Mandelbrot B (1998) A discussion of ‘Is the geometry of nature fractal?’ Science 279:783–785
  • 19. Margaret A, Oliver R, Webster R (1986) Semi-variograms for modelling the spatial pattern of landform and soil properties. Earth Surf Proc Land 11:491–504
  • 20. Marion A, Tait SJ, Mcewan IK (2003) Analysis of small-scale gravel bed topography during armouring. Water Resour Res 39:291–297
  • 21. Mark DM, Aronson PB (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. J Int Assoc Math Geol 16(7):671–683
  • 22. Nikora V (1991) Fractal structures of river plan forms. Water Resour Res 27(6):1327–1333
  • 23. Nikora VL, Goring DG, Biggs BJF (1998) On gravel-bed roughness characterization. Water Resour Res 34:517–527
  • 24. Nikora V, Walsh J (2004) Water-worked gravel surfaces: high-order structure functions at the particle scale. Water Resour Res 40:W12601.1-W12601.7
  • 25. Orford JD, Whalley WB (1983) The use of the fractal dimension to quantify the morphology of irregular-shaped particles. Sedimentology 30(5):655–668
  • 26. Papanicolaou AN, Tsakiris AG, Strom KB (2012) The use of fractals to quantify the morphology of cluster microforms. Geomorphology 139:91–108
  • 27. Pfeifer P (1984) Fractal dimension as a working tool for surface-roughness problems. Appl Surf Sci 18:146–164
  • 28. Polidori L, Chorowicz J, Guillande R (1991) Description of terrain as a fractal surface, and application to digital elevation model quality assessment. Photogramm Eng Remote Sens 57(10):1329–1332
  • 29. Qin J, Ng SL (2011) Multifractal characterization of water-worked gravel surfaces. J Hydraul Res 49(3):345–351
  • 30. Qin J, Zhong D, Ng SL, Wang G (2012) Scaling behavior of gravel surfaces. Math Geoences 44(5):583–594
  • 31. Qin J, Zhong D, Wang G, Ng SL (2013) Influence of particle shape on surface roughness: dissimilar morphological structures formed by man-made and natural gravels. Geomorphology 190(15):16–26
  • 32. Rijn LCV (1982) Equivalent roughness of alluvial bed. J Hydraul Division 108:1215–1218
  • 33. Robert A (1988) Statistical properties of sediment bed profiles in alluvial channels. Math Geol 20(3):205–225
  • 34. Robert A, Richards KS (1988) On the modelling of sand bedforms using the semi-variogram. Earth Surf Proc Land 13(5):459–473
  • 35. Robert A (1991) Fractal properties of simulated bed profiles in coarse-grained channels. Math Geol 23(3):367–382
  • 36. Rossi RE, Mulla DJ, Franz JEH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62(2):277–314
  • 37. Roy AG, Robert A (1990) Fractal techniques and the surface roughness of talus slopes: a comment. Earth Surf Proc Land 15(3):283–285
  • 38. Sapozhnikov VB, Foufoula-Georgiou E (1996) Self-affinity in braided rivers. Water Resour Res 32(5):1429–1439
  • 39. Suzuki M (1984) Finite-size scaling for transient similarity and fractals. Progress Theoret Phys 71(6):1397–1400
  • 40. Webster R (1985) Quantitative spatial analysis of soil in the field. Adv Soil Sci 3:10–12
  • 41. Wilson KC (1989) Mobile-bed friction at high shear stress. J Hydraul Eng 115:825–830
  • 42. Wohl EE, Anthony DJ, Madsen SW, Thompson DM (1996) A comparison of surface sampling methods for coarse fluvial sediments. Water Resour Res 32:3219–3226
  • 43. Xie HP, Wang JA, Stein E (1998) Direct fractal measurement and multifractal properties of fracture surface. Phys Lett 242:41–50
  • 44. Zhong L, Zhang JM, Xu GX, Pan YW (2017) Fractal characteristics of non-uniform gravel rough surfaces. J Sedim Res 42(4):15–22 (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8466cce5-97fa-472a-9737-90dbb809f700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.