PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie skraplania czynników chłodniczych w płaszczowo-rurkowym miniwymienniku ciepła

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W artykule opisano nową konstrukcję miniwymiennika ciepła typu płaszczowo-rurkowego wykorzystanego jako miniskraplacz niskociśnieniowych czynników chłodniczych HFE 7000 i HFE 7100. Konstrukcja ta jest odpowiedzią na światowy trend budowy wysokosprawnych, zminiaturyzowanych konstrukcji wymienników ciepła do zastosowań w HVACR. Autorzy określili charakterystykę procesu skraplania oraz wpływ grubości kondensatu na intensywność przejmowania ciepła. Wyniki pozwoliły opracować własną zależność obliczeniową pozwalającą wyznaczać wartości współczynnika przejmowania ciepła podczas skraplania czynników chłodniczych w miniwymiennikach płaszczowo-rurkowych o małej mocy cieplnej.
Rocznik
Tom
Strony
50--57
Opis fizyczny
Bibliogr. 46 poz., rys., wykr., wz.
Twórcy
  • Politechnika Koszalińska, Katedra Energetyki
  • Politechnika Koszalińska, Katedra Energetyki
  • Politechnika Koszalińska, Katedra Energetyki
Bibliografia
  • [1] BANDHAUER T.M., AGARWAL A., GARIMELLA S.: Measurement and modeling of condensation heat transfer coefficients in circular microchannels. Journal of Heat Transfer Transactions of ASME 2006, vol. 128. s. 1050-1059.
  • [2] GARIMELLA S.: Condensation flow mechanisms in micro-channels: basis for pressure drop and heattransfer models. Heat Trans. Eng. 2004. vol. 25, No. 3, pp. 104 - 116.
  • [3] KANDLIKAR S.G., GARIMELLA S., LI 0., COLIN S., KING M.R.: Heat Transfer and Fluid Flow In Minichannels and Microchannels. Elsevier 2006.
  • [4] ZHANG W., XU J., LIU G.: Multi - channel effect of condensation flow in a micro triple − channel condenser. International Journal of Multiphase flow 2008, vol. 34, pp. 1175-1184.
  • [5] B0HDAL T., CHARUN H., KUCZYNSKI W.: Investigation of the condensation process in the mini-systems of compressor refrigerating systems. Conference COMPRES−SORS'2009, pp. 1-8.
  • [6] MEHENDALE, S.; JACOBI, A.M.; SHAH, M.M.: Fluid flow and heattransfer at micro-and meso-scales with application to heat exchanger design. Appl. Mech. Rev, 2000, 53, 175-193.
  • [7] BELGHAZI, M.; BONTEMPS, A.; SIGNE, J.C.; MARVILLET, C.: Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes . Comparison of experimental results and a classical model A lange binaire a Condensation d'un fuide pur et d'un me A rieur d'un faisceau det. Int. J. Refrig. 2001, 24, 841-855.
  • [8] Jl, W.T.; ZHAO, C.Y.; ZHANG, D.C.; LI, Z.Y.; HE, Y.L.; TAO, W.Q. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int. J. Heat Mass Transf. 2014, 77,194-201, https://dol.org/10.1016/i.ijheaimasstransfer.2014.04.050.
  • [9] Jl, W.T.; CH0NG, G.H.; ZHAO. C.Y.; ZHANG, H.;TAO, W.Q.: Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. Int. J. Refrig. 2018, 93, 259-268, https://doi.org/10.1016/i. ijrefrig.2018.06.013.
  • [10) KANG, J.; KIM, H.; BAK, J.; LIM, S.G.; YUN, B. Condensation of steam mixed with non-condensable gas on vertical heat exchanger tubes in circumstances with free convection. Int. J. Heat Mass Transf. 2021, 169, 120925, https://doi. org/10.1016/j.ijheatmasstransfer.2021.120925.
  • [11] RIBEIRO, F.; de CONDE. K.E.; GARCIA, E.C.: NASCIMENTO, I. P.: Heat transfer performance enhancement in compact heat exchangers by the use of turbulators in the inner side. Appl. Therm. Eng. 2020,173, 115188, https://doi.org/10.1016/j.applthermaleng.2020.115188.
  • [12] LI, G.; CAO, B.; ZHOU, S.; BIAN. H.; DING, M.: Effects of inclination and flow velocity on steam condensation consisting of air on tube bundle external surfaces. Prog. Nucl. Energy 2021, 136, 103722, https://doi.org/10.1016/J. PNUCENE.2021.103722.
  • [13] GHOLAMI, A.; MOHAMMED, H.A.; WAHID, M.A.; KHIADANI, M. PARAMETRIC: design exploration of fin-and-oval tube compact heat exchangers performance with a new type of corrugated fin patterns. Int. J. Therm. Sci. 2019, 144, 173-190, https://doi.org/10.1016/], ¡¡thermalsci.2019.05.022.
  • [14] JIAN, G.; PETERSON, G.P.; WANG, S.: Experimental investigation of the condensation mechanisms in the shell side of spiral wound heat exchangers. Int. J. Heat Mass Transf. 2020, 154, 119733, https://doi.org/10.1016/]. ijheatmasstransfer.2020.119733.
  • [15] BARZ, T.; EMHOFER, J.: Paraffins as phase change material in a compact plate-fin heat exchanger—Part I: Experimental analysis and modeling of complete phase transitions. J. Energy Storage 2021. 33,102128, https:// doi.org/10.1016/].est.2020.102128.
  • [16] BARZ, T.: Paraffins as phase change material in a compact plate-fin heat exchanger—Part II: Validation of the "curve scale" hysteresis model for incomplete phase transitions. J. Energy Storage 2021. 34, 102164, https://doi.org/10.1016/].est.2020.102164,
  • [17] SARMIENTO, A.P.C.; MILANEZ, F.H.; MANTELLI, M.B.H.: Theoretical models for compact printed circuit heat exchangers with straight semicircular channels. Appl. Therm. Eng. 2021,184,115435, https://doi.org/10.1016/i. applthermaleng.2020.115435.
  • [18] Al ZAHRANI, S.; ISLAM, M.S.: SAHA, S.C.: Heat transfer enhancement of modified flat plate heat exchanger. Appl. Therm. Eng. 2021,186,116533. https://doi.org/10.1016/i. applthermaleng.2020.116533.
  • [19] PIASECKA, M.; MACIEJEWSKA, B.: International Journal of Heat and Mass Transfer Spatial orientation as a factor in flow boiling heattransfer of cooling liquids in enhanced surface minichannels. Int. J. Heat Mass Transf. 2018,117,375-387, https://doi.org/10.1016/j.iiheatmasstransfer. 2017.10.019.
  • [20] OZTURK, M.M.; DOGAN, B.; ERBAY, L.B.: Performance analysis of a compact heat exchanger with offset strip fin by non-uniform uninterrupted fin length. Appl. Therm. Eng. 2019, 159, 113814, https://doi.org/10.1016/j. applthermaleng.2019.113814.
  • [21] PANDEY, V.; KUMAR, P.; DUTTA, P.: Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sC02 Brayton cycle. Renew. Sustain. Energy Rev. 2020, 134,110091, https://doi.org/10.1016/j.rser.2020.110091.
  • [22] THEOLOGOU, K.; HOFER, M.; MERTZ, R.: Buck, M.; LAURIEN, E.; STARFUNGER, J.: Experimental investigation and modelling of steam-heated supercritical co2 compact cross-flow heat exchangers. Appl. Therm. Eng. 2020,190,116352, https://doi.org/10.1016/i.applthermaleng.2020.116352.
  • [23] KHAN, M.S.; ZHU, Z.; HUANG, Q.: Design and analysis of thermal hydraulic performance of compact heat exchanger for FDS-II auxiliary system. Fusion Eng. Des, 2019, 147, 111251, https://doi.org/10.1016/j.fusengdes.2019.111251.
  • [24] BUONOMO. B.; Dl PASQUA, A.; MANCA, O.; NARDINI, S.: Evaluation of thermal and fluid dynamic performance pa-rameters in aluminum foam compact heat exchangers. Appl. Therm. Eng. 2020, 176, 115456, https://doi.org/10.1016/j.applthermaleng. 2020.115456.
  • [25] BEZAATPOUR, M.; ROSTAMZAOEH, H.; BEZAATPOUR, J.; EBADOLLAHI, M.: Magnetic-induced nanoparticies and rotary tubes for energetic and exergetic performance improvement of compact heat exchangers. Powder Technol. 2021, 377. 396-414, https://doi.org/10.1016/]. powtec.2020.09.010.
  • [26] JAMUNA RANI, G.; SAI RANI, G.; PRAVEEN, A.: Nano fluids effect on crossflow heat exchanger characteristics— Review. Mater. Today Proc. 2020, 44, 527-531, https://doi.org/10.1016/j.matpr.2020.10.210.
  • [27] LIU, N.: XIAO, H.: LI, J.: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl. Therm. Eng. 2016, 102, 63-72, https://doi.org/10.1016/j. applthermaleng.2016.03.073.
  • [28] BOHDAL, T.; CHARUN, H.; KRUZEL, M.; SIKORA, M.: High pressure refrigerants condensation in vertical pipe mini-channels. Int. J. Heat Mass Transf. 2019,134,1250-1260, https://doi.org/10.1016/i.iiheatmasstransfer.2019.02.037.
  • [29] RAHMAN, M.M.; KARIYA, K.; MIYARA, A.: An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a mul-tiport minlchannel with and without fins. Int. J. Heat Mass Transf. 2018, 116, 50-60, https://dol.org/10.1016/]. ijheat-masstransfer.2017.09.010.
  • [30] AZZOLIN, M.; BORTOLIN, S.: Condensation and flow boiling heat transfer of a HFO/HFC binary mixture Inside a minichannel. Int. J. Therm. Sci. 2021, 159, 106638, https://dol.org/10.1016/],l]thermaisci.2020.106638.
  • [31] MURPHY, O.L.; MACDONALD. M.P.; MAHVI, A.J.; GARIMELLA, S.: Condensation of propane in vertical mini-channels. Int. J. Heat Mass Transf. 2019,137.1154-1166. https://doi.org/10.1016/j.iiheatmasstransfer.2019.04.023.
  • [32] KRUZEL, M.; BOHDAL, I; SIKORA, M.: Heattransfer and pressure drop during refrigerants condensation in compact heat exchangers. Int. J. Heat Mass Transf, 2020, 161,120283, https://doi.org/10.1016/i.ijheatmasstransfer.2020.120283.
  • [33] LIU, P.; HO, J.Y.; WONG. T.N.; TOH, K.C.: Laminar film condensation inside and outside vertical diverging/converging small channels: A theoretical study. Int. J. Heat Mass Transf. 2020. 149, 119193, https://doi.org/10.1016/]. ijheatmasstransfer.2019.119193.
  • [34] MINKO, K.B.; YANKOV, G.G.; ARTEMOV. V.I.; MILMAN, O.O.: A mathematical model of forced convection condensation of steam on smooth horizontal tubes and tube bundles in the presence of noncondensables. Int. J. Heat Mass Transf. 2019, 140, 41-50, https://doi.org/10.1016/i.¡jheatmasstransfer.2019.05.099.
  • [35] KANG, J.; MOON, J.; KO, Y; LIM, S.G.; YUN, B.: Steam condensation on tube-bundle in presence of non-condensable gas under free convection. Int. J. Heat Mass Transf. 2021. 178, 121619, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121619.
  • [36] GU, Y.; DING, Y.; LIAO, Q.; FU, Q.; ZHU, X.; WANG, H.: Analysis of convectlve condensation heat transfer for moist air on a three-dimensional finned tube. Appl. Therm. Eng. 2021, 195, 117211, https://doi.org/10.1016/j. applthermaleng.2021.117211.
  • [37] JIVANI, S.; LIU, J.H.; PU, J.H.; WANG, H.S.: Marangonl condensation of steam-ethanol mixtures on a horizontal smooth tube. Exp. Therm. Fluid Sci. 2021, 128, 110434. https://doi.org/10.1016/i.expthermflusci.2021.110434.
  • [38] MAURO, A.W.; NAPOLI, G.; PELELLA, F.; VISCITO, L: Flow pattern, condensation and boiling Inside and outside smooth and enhanced surfaces of propane (R290). State of the art review. Int. J. Heat MassTransf. 2021,174,121316, https://dol.org/10.1016/j.ijheatmasstransfer. 2021.121316.
  • [39] LIU, P.; HO, J.Y.; WONG, T.N.; TOH, K.C.: Laminar film con¬densation Inside and outside vertical diverging/converging small channels: A theoretical study. Int. J. Heat Mass Transf. 2020. 149, 119193, https://doi.org/10.1016/]. iiheatmasstransfer.2019.119193.
  • [40] ASOKAN. N.; GUNNASEGARAN, P.; VICKI WANATASANAPPAN, V,: Experimental investigation on the thermal performance of compact heat exchanger and the theological properties of low concentration mono and hybrid nanofluids containing AI203 and CuO nanoparticies. Therm. Sci. Eng. Prog. 2020, 20,100727, https://dol.org/10.1016/].tsep.2020.100727.
  • [41] HOSEINZADEH, S.; HEYNS, P.S.: Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Eng. Fail. Anal. 2020,113, 104548, https://doi.org/10.1016/i.engfailanal.2020.104548.
  • [42] HOSEINZADEH, S.; OTAGHSARA, S.M.T.; KHATIR. M.H.Z.; HEYNS, P.S.: Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 3721-3735, https://doi.org/10.1108/ HFF-09-2019-0671.
  • [43] HOSEINZADEH, S.; GARCIA, D.A.: Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry. J. Energy Resour. Technol. 2022.144,062105, https://doi.org/10.1115/1.4052672.
  • [44] STEINKE, M.E.; KANDLIKAR, G.: Single-phase heattransfer enhancement techniques in microchannel and mini-channel flows. In Proceedings of the Second International Conference on Microchannels and Minichannels, Rochester, NY, USA. 17-19 June 2004.
  • [45] KRUZEL, M.; BOHDAL, T.; DUTKOWSKI, K.: External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers. Materials 2021,14,6825. https://doi.org/10.3390/ma14226825.
  • [46] BOHDAL, I; KRUZEL, M.: International Journal of Heat and Mass Transfer Refrigerant condensation in vertical pipe minichannels under various heat flux density level. Int. J. Heat Mass Transf. 2020, 146, 118849, https://doi.org/10.1016/].i]heatmasstransfer. 2019.118849.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-846608ed-ee32-42dc-982c-ae5c2d01058e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.