PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deconcentration of Chromium Contained in Wastewater Using a Bacteria and Microalgae Consortia with a High Rate Algal Reactor System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollution has recently gained serious attention as an environmental issue. One example of heavy metal pollution in the natural water environment is chromium metal, which is released by several industries. Polyvalent chromium 6 is one of the most difficult environmental pollutants to remove due to its dissolvable and unstable properties. Bioremediation using a consortium of bacteria and microalgae in a High Rate Algal Reactor (HRAR) system can be expected to decrease the chromium concentration. The aim of this study was to determine the percentage of chromium removal by a bacteria and microalgae consortium and to determine the best ratio between these two kinds of microorganism in the context of pollutant reduction. The wastewater containing chromium that was used in this study was artificial wastewater with a chromium concentration of 17 mg/L. The species of microalgae and bacteria were Chlorella vulgaris and Azotobacter S8. The chromium concentration used in the main experiment was determined through a preliminary Range Finding Test (RFT) for the microalgae and Minimum Inhibitory Concentration (MIC) for the bacteria. The chromium concentrations in RFT and MIC were 0, 17, 42, 85, 169 and 339 mg/L and the variables in the main study were the respective Azotobacter S8 and Chlorella vulgaris compositions (50:50, 75:25, 25:75 %v/v). This, in addition to the variation in the consortium composition, was compared to the polluted media in the reactor (5:95 and 10:90 %v/v). Such parameters as pH, temperature, total chromium concentration, microalgae cell count, and bacterial colonies were monitored during the experiments. The chromium deconcentration study was conducted over 7 (seven) days in a High Rate Algal Reactor (HRAR) with the microorganism inoculation conducted in the determined composition of artificial wastewater. The reactor was stirred for 24 hours per day and illuminated using artificial light at an intensity of 6000 – 7000 lux. The deconcentration of chromium was analyzed using an Atomic Adsrober Spectrophotometer (AAS). The results showed that the highest chromium removal was reached in the reactor where the ratio of microorganisms and bacteria was 50%:50%, the initial inoculum of polluted media was 5%: 95% and there was a chromium removal rate of 18.68%. The consortium of Azotobacter S8 bacteria and Chlorella vulgaris microalgae can thus reduce the chromium concentration through the mechanisms of biosorption, bioaugmentation, and bioaccumulation.
Rocznik
Strony
272--284
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Panning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia
  • Directorate of Coastal and Marine Pollution and Degradation Control, Directorate General of Environmental Pollution and Degradation Control, Ministry of Environment and Forestry Republic of Indonesia
  • Department of Civil Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia
Bibliografia
  • 1. Abdulla, H.M., Kamal, E.M., Mohamed, A.H., dan El-Bassuony, A.D. (2010). Chromium Removal from Tannery Wastewater Using Chemical and Biological Techniques Aiming Zero Discharge of Pollution. Proceeding of Fifth Scientific Environmental Conference. Zagazig-UNI. 171–183
  • 2. Ali, S.M., Nasr, H.S., Abbas, M.T. (2015). Using Diazotrophic Bacteria for Biomass Production of Microalgae. Egyptian Journal of Environmental Research, 3: 41–52.
  • 3. Anderson, R.A. 2005. Algal Culturing Techniques. China : Elsevier Academic Press, pp. 242–249.
  • 4. APHA, AWWA, WPFC. 2012. Standard Methods for Examination of Water and Wastewater: The 22nd Edition. Washington DC.
  • 5. Benazier, J. Fathima, R. Suganthi, D. Rajvel, M. Padmini Pooja dan B. Mathithumilan. 2010. Bioremediation of Chromium in Tannery Effluent by Microbial Consortia. African Journal of Biotechnology, 9(21): 3140–3143.
  • 6. Brady, D., Letebele, B., Duncan, J.R., Rose, P.D. (1994). Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella Algae. Water SA, 20: 213–218.
  • 7. Cervantes, C., Garcia, J.C., Devars, S., Corona, F.G., Tavera, H.L., Guzman, J.C.T., dan Sanchez, R.M. (2001). Interactions of Chromium With Microorganism and Plants. FEMS Microbiology Review, (25): 335–347.
  • 8. Droste, R. 2007. Theory and Practice of Water and Wastewater Treatment. John Wiley and Sons. New York. USA.
  • 9. Erni, dan Hindersah, R. (2011). Biosorpsi Kadmium Dan Komposisi Eksopolisakarida Azotobacter Sp Pada Dua Konsentrasi CdCl2. Agrinimal, 1(1): 33–37.
  • 10. Esmaeili, L. 2015. Bioaccumulation and Toxic Effect of Zinc on The Green Alga Chlorella vulgaris. Thesis Universite Du Quebec A Montreal.
  • 11. Evelyne, R.J., dan Ravisankar, V. (2014). Bioremediation of Chromium Contaminationa Review. International Journal of Research In Earth & Environmental Sciences, 1(6): 20–26.
  • 12. Farombi, E.O., Adelowo, O.A., danAjimoko, Y.R. 2007. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. International Journal of Environmental Research Public Health, 4(2): 158–5.
  • 13. Fukami, K., Nishijirna, T., dan Ishida, Y. 1997. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358: 185–191.
  • 14. Glick, B., dan Pasternak. 2001. Molecular Biotechnology. ASM Press. WashingtonDC. USA
  • 15. Haryoto, dan Agustono, W. 2004. Kinetika Bioakumulasi Logam Berat Kadmium oleh Fitoplankton Chlorella sp Lingkungan Perairan Laut. Jurnal Penelitian Sains &Teknologi, 5(2) : 89–103.
  • 16. Holleman, A.F., Wiberg, E., Wiberg, N. 1985. Chromium. Lehrbuch der Anorganischen Chemie (dalam bahasa German) (edisi ke-91–100). Walter de Gruyter. hlm. 1081–1095. ISBN 3–11–007511–3
  • 17. Hossain, Kamal., Hasan, M., Parvin, M.N., Hasan, M., Islam, S., Haque, A. 2012. Antimicrobial, Cytotoxic and Thrombolitic Activity of Cassia senna Leaves (Family : Fabacee). Journal of Applien Pharmacetical Science, (6): 186–190.
  • 18. Imani, S, Rezael-Zarchi,S., Zand, A.M., Abarg. Hashemi, H.B., Boma, H., Javid, A., dan Abarghouei, H.B. 2011. Hg, Cd and Pb Heavy Metal Bioremidiation by Dunaliella Alga. Journal of MedicinalPlants Research, 5(13) :2775–2780.
  • 19. Imron, M.F dan Purwanti, I.F. 2016. Uji Kemampuan Bakteri Azotobacter S8 dan Azotobacter S8 untuk Menyisihkan Trivalent Chromium (Cr3+) pada Limbah Cair. Jurnal Teknik ITS, 5(1).
  • 20. Isnansetyo, A. dan Kurniastuty. 1995. Teknik Kultur Phytopankton dan Zooplankton Pakan Alami 2 untuk Pembenihan Organisme Laut. Yogyakarta: Kanisius.
  • 21. Iyer, A., Mody, K., dan Jha, B. 2005. Biosorption of Heavy Metals by a Marine Bacterium. Pollution Bulletin, 50: 340–343.
  • 22. Kamaludeen, S.P.B., Arunkumar, K.R., Avudainayagam, S., dan Ramasamy, K. 2003. Bioremediation of Chromium Contaminated Environments. Journal of Experimental Biology, 41(9): 972–985.
  • 23. Kaur, H.R. dan Kumar, A. 2014. Bioremediation of Hexavalent Chromium in Wastewater Effluent by Pseudomonas putida (MTCC 102). Journal of Research in Earth & Environmental Sciences, 1(4): 18–24.
  • 24. Kawaroe, M., Prartono, T., Sannuddin, A., Sari, D. W., & Augustine, D. 2010. Mikroalga Potensi dan Pemanfaatannya untuk Produksi Bio Bahan Bakar. Bogor: IPB Press.
  • 25. Kotaś, J. dan Stasicka, Z. 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3): 263–283.
  • 26. Liang, Z., Liu, Y., Ge, F., Xu Y., Tao, N., Peng, F., dan Wong, M. 2013. Efficiency Assesment and pH Effect in Removing Nitrogen and Phosporus by Algae-Bacteria Combined System of Chlorella vulgaris and Bacillus licheniformis. Journal Chemosphere, (92): 1383–1389.
  • 27. Maligan, J.M., Widayanti, V.T., dan Zubaidah, E. 2015. Identifikasi Senyawa Antimikroba Ekstrak Mikroalga Laut Tetraselmis chuii (Kajian Metode Ekstraksi Maserasi, Jenis Pelarut, dan Waktu Ekstraksi. Jurnal Teknologi Pertanian, 16(3): 195–206.
  • 28. Man K.L., Yusoff, M.I., Uemura, Y., dan Wei, J. 2016. Cultivation of Chlorella vulgaris Using Nutriens Source from Domestic Wastewater for Biodiesel Production: Growth Condition and Kinetic Studies.Renewable Energy, (103): 197–207.
  • 29. Mujtaba, G., & Lee, K. 2016. Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria. Applied Chemistry for Engineering, 27(1): 1–9.
  • 30. Nacorda, J.O.O., Martinez-Goss, M.R.,dan Torreta, N.K. 2010. Bioremoval and Bioreduction of Chromium (VI)by the Green Microalga, Chlorella vulgarisBeij.,Isolated from Laguna de Bay, Philippines. Phillipine Journal of Science, 139(2): 181–188.
  • 31. Nath, J., dan Ray, L. 2015. Biosorption of Malachite Green from Aqueous Solution by Dry Cells of Bacillus cereus M1 16 (MTCC 5521). Journal of Environmental Chemical Engineering, 3(1): 386–394
  • 32. Nithya, C., Gnanalakshmi, B., dan Pandian, S.K. (2011). Assesment and Characterization of Heavy Metal Resistance in Palk Bay Sediment Bacteria. Marine Environmental Research, 71: 283–294.
  • 33. Oves, M., Khan, M.S., dan Zaidi, A. 2013. Chromium Reducing and Plant Growth Promoting Novel Strain Pseudomonas aeruginosa OSG41 Enhance Chickpea Growth in Chromium Amended Soils. European Journal of Soil Biology, 56(1): 72–83.
  • 34. Pavel, L.V., Diaconu, M., dan Gavrilescu, M. 2012. Studies of Toxicity of Chromium(VI) and Cadmium(II) on Some Microbial Species. International Symponium on Biosorption and Bioremediation. Romania.
  • 35. Purnamawati, F.S., Tri, R.S., dan Munifatul, I. 2015. Potensi Chlorella vulgaris Beijerinck Dalam Remediasi Logam Berat Pb dan Cd Skala Laboratorium. Jurnal Bioma, 16(2): 102–113.
  • 36. Rose, P.D., Boshoff, G.A., Van Hille, R.P., Wallace, L.C.M., Dunn, K.M.,dan Duncan, J.R. 1998. An Integrated Algal Sulphate Reducing High Rate Ponding Process for The Treatment of Acid Mine Drainage Wastewaters. Journal Biodegradation, (9): 247–57.
  • 37. Shrivastava, A., Singh, V., Jadon, S., dan Bhadauria, S. 2013. Heavy Metal Tolerance of Three dfifferent Bacteria Isolated from Industrial Effluent. International Journal of Pharmaceutical Research and Bioscience, 2(2): 137–147
  • 38. Silver, S. 1996. Bacterial Resistance to Toxic Metal Ions – A Review. Gene, 179: 9–19.
  • 39. Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., dan Naidu, R. 2011. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Journal Biotechnology Advances, 29(6): 896–907.
  • 40. Suminten, N.K., Sudiarta, I.W., dan Simpen, I.N. 2014. Adsorpsi Ion Logam Cr(III) pada Silika Gel dari Abu Sekam Padi Termodifikasi Ligan Difenilkarbazon (Si-DPZon). Jurnal Kimia, 8(2): 231–236.
  • 41. Tam, N.F.Y., Wong, Y.S., dan Simpson, C.G. 1998. Removal of Copper by Free and Immobilized Microalga, Chlorella vulgaris. Journal Wastewater Treatment with Algae, (2): 17–36.
  • 42. Tortora, G.J. 2001. Microbiology an Introduction. 7th ed. World Student Series. SanFrancisco. USA.
  • 43. Triatmojo, A., dan Tangahu, B.V. 2017. Pengaruh Intensitas dan Durasi Paparan Cahaya Light-Emitting Diodes (LEDs) Pada Sistem High Rate Algal Reactor Dalam Pengolahan Limbah Cair Laundry. Tugas Akhir Jurusan Teknik Lingkungan ITS.
  • 44. USEPA. 2010. IRIS, Toxicological Review of Hexavalent Chromium 2010. External Review Draft). U.S.Environmental Protection Agency, Washington, DC EPA/635/R10/004A, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8463829d-3c5d-4a78-8461-d17184f20285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.