PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ADM1-based modeling of anaerobic codigestion of maize silage and cattle manure : calibration of parameters and model verification. Part 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie kofermentacji kiszonki kukurydzy i obornika bydlęcego za pomocą ADM1 : kalibracja i weryfikacja modelu. Część. 2
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to implement ADM1xp model to simulate behavior of anaerobic co-digestion of maize silage and cattle manure. The accuracy of ADM1xp has been assessed against experimental data of anaerobic digestion, performed at OLR = 2.1 gVS dm-3·d-1 and HRT = 45d. Due to the high number of parameters in ADM1xp, it was necessary to develop a customized procedure limiting the range of parameters to be estimated. The best fitting of experimental to simulated data was obtained after verification of 9 among 105 stoichiometric and kinetic parameters. The values of objective function (Jc) ranged between 0.003 (for valerate) and 211 (for biogas production).
PL
Celem pracy było wykorzystanie modelu ADM1xp do symulacji procesu kofermentacji kiszonki kukurydzy i obornika bydlęcego. Przydatność modelu oceniano wykorzystując dane z eksperymentu w skali laboratoryjnej. Badania prowadzono przy obciążeniu komory ładunkiem organicznym OLR = 2,1 gVS dm-3·d-1 oraz hydraulicznym czasie zatrzymania wsadu w fermentorze, HRT = 45d. Z powodu dużej liczby parametrów w modelu ADM1xp, zastosowano procedurę, która umożliwia zmniejszenie liczby weryfikowanych parametrów podczas kalibracji. Najlepsze dopasowanie danych eksperymentalnych do modelowych uzyskano po weryfikacji 9 spośród 105 stechiometrycznych i kinetycznych parametrów. Wartości współczynnika dopasowania (Jc) zmieniały się w zakresie od 0,003 (kwas walerianowy) do 211 (produkcja biogazu).
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Poland 1 Faculty of Environmental Sciences
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Technical Sciences Department of Systems Engineering
  • University of Warmia and Mazury in Olsztyn, Poland 1 Faculty of Environmental Sciences
autor
  • University of Warmia and Mazury in Olsztyn, Poland 1 Faculty of Environmental Sciences
autor
  • University of Warmia and Mazury in Olsztyn, Poland 1 Faculty of Environmental Sciences
Bibliografia
  • [1] Angelidaki, I., Ellegaard, L. & Ahring, B.K. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas, Biotechnology and Bioengineering, 63, 3, pp. 363-372.
  • [2] Angelidaki, I., Schmidt, J.E. Ellegaard, L. & Ahring, B.K. (1998). An automatic system for simultaneous monitoring of gas evolution in multiple closed vessels, Journal of Microbiological Methods, 33, 1, pp. 93-100.
  • [3] Antonopoulou, G., Gavala, H.N., Skiadas, I.V. & Lyberatos, G. (2012). ADM1-based modeling of methane production from acidifi ed sweet sorghum extract in a two stage process, Bioresource Technology, 106, pp. 10-19.
  • [4] Batstone, D.J., Keller, J., Newell, R.B. & Newland, M. (2000). Modelling anaerobic degradation of complex wastewater. II: Parameter estimation and validation using slaughterhouse effl uent, Bioresource Technology, 75, 1, pp. 75-85.
  • [5] Batstone, D.J. & Keller, J. (2001). Variation of bulk properties of anaerobic granules with wastewater type, Water Research, 35, 7, pp. 1723-1729.
  • [6] Batstone, D.J., Keller J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). Anaerobic digestion model No. 1. Scientifi c and Technical Report No. 13. IWA Publishing, London, UK 2002.
  • [7] Biernacki, P., Steinigeweg, S., Borchert, A. & Uhlenhut, F. (2013). Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine, Bioresource Technology, 127, pp. 188-194.
  • [8] Bischofsberger, W., Dichtl, N., Rosenwinkel, K.H., Seyfried, C.F. & Böhnke, B. (2005). Anaerobtechnik, Springer Verlag, Berlin Heidelberg 2005.
  • [9] Boubaker, F. & Ridha, B.C. (2008). Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1), Bioresource Technology, 99, 14, pp. 6565-6577.
  • [10] Christ, O., Wilderer, P.A., Angerhöfer, R. & Faulstich, M. (2000). Mathematical modeling of the hydrolysis of anaerobic processes, Water Science and Technology, 41, 3, pp. 61-65.
  • [11] Costello, D.J., Lee, P.L. & Greenfi eld, P.F. (1989). Control of anaerobic digesters using Generic Model Control, Bioprocess Engineering, 4, 4, pp. 119-122.
  • [12] Dochain, D. & Vanrolleghem, P. (2001). Dynamical modeling and estimation in wastewater treatment processes, IWA, London 2001.
  • [13] Fezzani, B. & Ben Cheikh, R. (2009). Extension of the anaerobic digestion model No. 1 (ADM1) to include phenol compounds biodegradation processes for simulating the anaerobic co-digestion of olive mill wastes at mesophilic temperature, Journal of Hazardous Materials, 172, 2-3, pp. 1430-1438.
  • [14] Galí, A., Benabdallah, T., Astals, S. & Mata-Alvarez, J. (2009). Modified version of ADM1 model for agro-waste application, Bioresource Technology, 100, 11, pp. 2783-2790.
  • [15] Ge, H., Jensen, P.D. & Batstone, D.J. (2010). Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge, Water Research, 44, 1, pp. 123-130.
  • [16] Hu, Z.H. & Yu, H.Q. (2005). Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover, Process Biochemistry, 40, 7, pp. 2371-2377.
  • [17] Kesavan, P. & Law, V.J. (2005). Practical identifi ability of parameters in Monod kinetics and statistical analysis of residuals, Biochemical Engineering Journal, 24, 2, pp. 95-104.
  • [18] Kim, J.R., Ko, J.H., Lee, J.J., Kim, S.H., Park, T.J., Kim, C.W. & Woo, H.J. (2006). Parameter sensitivity analysis for activated sludge models No. 1 and 3 combined with one-dimensional settling model, Water Science and Technology, 53, 1, pp. 129-138.
  • [19] Koch, K., Lübken, M., Gehring, T., Wichern, M. & Horn, H. (2010). Biogas from grass silage - measurements and modeling with ADM1, Bioresource Technology, 101, 21, pp. 8158-8165.
  • [20] IFAK. SIMBA® 6.0. User’s guide. Magdeburg: Ifak System GmbH, 2009.
  • [21] Lehtomaki, A., Vavilin, V.A. & Rintala, J.A., (2005). Kinetic analysis of methane production from energy crops, in: Ahring, B.K., Hartmann, H. (Eds.), Proceedings of the Fourth International Symposium on anaerobic digestion of solid waste, vol. 2. Copenhagen, Denmark, pp. 67-72.
  • [22] Lübken, M., Wichern, M., Schlattmann, M., Gronauer, A. & Horn, H. (2007). Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops, Water Research, 41, 18, pp. 4085-4096.
  • [23] Mladenovska, Z. & Ahring, B.K. (2000). Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures, FEMS Microbiology Ecology, 31, 3, pp. 225-229.
  • [24] Ramsay, I.R. (1997). Modelling and control of high-rate anaerobic wastewater treatment systems, Ph.D. thesis, University of Queensland, Australia 1997.
  • [25] Romli, M. (1993). Modelling and verifi cation of a two-stage high- -rate anaerobic wastewater treatment system, Ph.D. thesis, University of Queensland, Australia 1993.
  • [26] Rosén, C. & Jeppsson, U. (2006). Aspects on ADM1 implementation within the BSM2 framework. Tech. Report no. LUTEDX/ (TEIE-7224)/1-35/(2006). Department of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden 2006.
  • [27] Siegrist, H., Vogt, D., Garcia-Heras, J.L. & Gujer, W. (2002). Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion, Environmental Science and Technology, 36, 5, pp. 1113-1123.
  • [28] Vavilin, A., Rytov, S.V. & Lokshina, L.Ya. (1996). A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter, Bioresource Technology, 56, pp. 229-237.
  • [29] Veeken, A. & Hamelers, B. (1999). Effect of temperature on hydrolysis rate of selected biowise components, Bioresource Technology, 69, pp. 249-254.
  • [30] Wett, B., Eladawy, A. & Ogurek, M. (2006). Description of nitrogen incorporation and release in ADM1, Water Science and Technology, 54, 4, pp. 67-76.
  • [31] Wichern, M., Gehring, T., Fischer, K., Andrade, D., Lübken, M., Koch, K., Gronauer, A. & Horn, H. (2009). Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM 1, Bioresource Technology, 100, 4, pp. 1675-1681.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8461a23e-6335-431d-8e5d-3afdbfa6099e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.